Suppr超能文献

一种基于人工智能的心电图算法,用于在窦性节律期间识别室性期前收缩。

An artificial intelligence-enabled ECG algorithm for identifying ventricular premature contraction during sinus rhythm.

机构信息

Division of Cardiology, Department of Internal Medicine, National Taiwan University College of Medicine and Hospital Yun-Lin Branch, Dou-Liu City, Taiwan.

Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan.

出版信息

Eur J Med Res. 2022 Dec 14;27(1):289. doi: 10.1186/s40001-022-00929-z.

Abstract

BACKGROUND

Ventricular premature complex (VPC) is a common arrhythmia in clinical practice. VPC could trigger ventricular tachycardia/fibrillation or VPC-induced cardiomyopathy in susceptible patients. Existing screening methods require prolonged monitoring and are limited by cost and low yield when the frequency of VPC is low. Twelve-lead electrocardiogram (ECG) is low cost and widely used. We aimed to identify patients with VPC during normal sinus rhythm (NSR) using artificial intelligence (AI) and machine learning-based ECG reading.

METHODS

We developed AI-enabled ECG algorithm using a convolutional neural network (CNN) to detect the ECG signature of VPC presented during NSR using standard 12-lead ECGs. A total of 2515 ECG records from 398 patients with VPC were collected. Among them, only ECG records of NSR without VPC (1617 ECG records) were parsed.

RESULTS

A total of 753 normal ECG records from 387 patients under NSR were used for comparison. Both image and time-series datasets were parsed for the training process by the CNN models. The computer architectures were optimized to select the best model for the training process. Both the single-input image model (InceptionV3, accuracy: 0.895, 95% confidence interval [CI] 0.683-0.937) and multi-input time-series model (ResNet50V2, accuracy: 0.880, 95% CI 0.646-0.943) yielded satisfactory results for VPC prediction, both of which were better than the single-input time-series model (ResNet50V2, accuracy: 0.840, 95% CI 0.629-0.952).

CONCLUSIONS

AI-enabled ECG acquired during NSR permits rapid identification at point of care of individuals with VPC and has the potential to predict VPC episodes automatically rather than traditional long-time monitoring.

摘要

背景

室性早搏复合波(VPC)是临床实践中常见的心律失常。易感患者的 VPC 可引发室性心动过速/颤动或 VPC 诱导性心肌病。现有的筛查方法需要长时间监测,并且当 VPC 频率较低时,其成本和产量有限。十二导联心电图(ECG)成本低且应用广泛。我们旨在使用基于人工智能(AI)和机器学习的心电图阅读来识别窦性心律(NSR)期间的 VPC 患者。

方法

我们使用卷积神经网络(CNN)开发了一种 AI 驱动的 ECG 算法,以使用标准 12 导联 ECG 检测 NSR 期间出现的 VPC 的 ECG 特征。共收集了 398 例 VPC 患者的 2515 份心电图记录。其中,仅解析了无 VPC 的 NSR 心电图记录(1617 份心电图记录)。

结果

共解析了 387 例 NSR 下的 753 份正常心电图记录作为比较。CNN 模型通过图像和时间序列数据集进行训练过程。对计算机架构进行了优化,以选择最适合训练过程的模型。单输入图像模型(InceptionV3,准确率:0.895,95%置信区间 [CI] 0.683-0.937)和多输入时间序列模型(ResNet50V2,准确率:0.880,95%CI 0.646-0.943)在 VPC 预测方面均取得了令人满意的结果,均优于单输入时间序列模型(ResNet50V2,准确率:0.840,95%CI 0.629-0.952)。

结论

在 NSR 期间获取的 AI 驱动心电图可在护理点快速识别出 VPC 患者,并且有可能自动预测 VPC 发作,而不是传统的长时间监测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a50b/9749317/f868151be1eb/40001_2022_929_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验