Suppr超能文献

具有1/2分子自旋的模板导向二维纳米图案化

Template-directed 2D nanopatterning of = 1/2 molecular spins.

作者信息

Noh Kyungju, Colazzo Luciano, Urdaniz Corina, Lee Jaehyun, Krylov Denis, Devi Parul, Doll Andrin, Heinrich Andreas J, Wolf Christoph, Donati Fabio, Bae Yujeong

机构信息

Center for Quantum Nanoscience (QNS), Institute of Basic Science (IBS), 03760 Seoul, Republic of Korea.

Department of Physics, Ewha Womans University, 03760 Seoul, Republic of Korea.

出版信息

Nanoscale Horiz. 2023 May 2;8(5):624-631. doi: 10.1039/d2nh00375a.

Abstract

Molecular spins are emerging platforms for quantum information processing. By chemically tuning their molecular structure, it is possible to prepare a robust environment for electron spins and drive the assembly of a large number of qubits in atomically precise spin-architectures. The main challenges in the integration of molecular qubits into solid-state devices are (i) minimizing the interaction with the supporting substrate to suppress quantum decoherence and (ii) controlling the spatial distribution of the spins at the nanometer scale to tailor the coupling among qubits. Herein, we provide a nanofabrication method for the realization of a 2D patterned array of individually addressable Vanadyl Phthalocyanine (VOPc) spin qubits. The molecular nanoarchitecture is crafted on top of a diamagnetic monolayer of Titanyl Phthalocyanine (TiOPc) that electronically decouples the electronic spin of VOPc from the underlying Ag(100) substrate. The isostructural TiOPc interlayer also serves as a template to regulate the spacing between VOPc spin qubits on a scale of a few nanometers, as demonstrated using scanning tunneling microscopy, X-ray circular dichroism, and density functional theory. The long-range molecular ordering is due to a combination of charge transfer from the metallic substrate and strain in the TiOPc interlayer, which is attained without altering the pristine VOPc spin characteristics. Our results pave a viable route towards the future integration of molecular spin qubits into solid-state devices.

摘要

分子自旋正成为量子信息处理的新兴平台。通过化学调节其分子结构,可以为电子自旋制备一个稳健的环境,并推动大量量子比特在原子精确的自旋结构中组装。将分子量子比特集成到固态器件中的主要挑战在于:(i)最小化与支撑衬底的相互作用以抑制量子退相干;(ii)在纳米尺度上控制自旋的空间分布,以调整量子比特之间的耦合。在此,我们提供了一种纳米制造方法,用于实现二维图案化的、可单独寻址的钒氧基酞菁(VOPc)自旋量子比特阵列。分子纳米结构构建在钛氧基酞菁(TiOPc)的抗磁单分子层之上,该单分子层使VOPc的电子自旋与下面的Ag(100)衬底实现电子解耦。如扫描隧道显微镜、X射线圆二色性和密度泛函理论所示,同构的TiOPc中间层还充当模板,在几纳米的尺度上调节VOPc自旋量子比特之间的间距。长程分子有序排列归因于金属衬底的电荷转移和TiOPc中间层中的应变共同作用,且这一过程不会改变原始VOPc的自旋特性。我们的结果为未来将分子自旋量子比特集成到固态器件中铺平了一条可行的道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验