The Sainsbury Laboratory, Norwich Research Park NR4 7UH, Norwich, UK.
John Innes Centre, Norwich Research Park NR4 7UH, Norwich, UK.
Proc Natl Acad Sci U S A. 2023 Feb 14;120(7):e2217114120. doi: 10.1073/pnas.2217114120. Epub 2023 Feb 8.
Nicotinamide adenine dinucleotide (NAD) has emerged as a key component in prokaryotic and eukaryotic immune systems. The recent discovery that Toll/interleukin-1 receptor (TIR) proteins function as NAD hydrolases (NADase) links NAD-derived small molecules with immune signaling. We investigated pathogen manipulation of host NAD metabolism as a virulence strategy. Using the pangenome of the model bacterial pathogen , we conducted a structure-based similarity search from 35,000 orthogroups for type III effectors (T3Es) with potential NADase activity. Thirteen T3Es, including five newly identified candidates, were identified that possess domain(s) characteristic of seven NAD-hydrolyzing enzyme families. Most strains that depend on the type III secretion system to cause disease, encode at least one NAD-manipulating T3E, and many have several. We experimentally confirmed the type III-dependent secretion of a novel T3E, named HopBY, which shows structural similarity to both TIR and adenosine diphosphate ribose (ADPR) cyclase. Homologs of HopBY were predicted to be type VI effectors in diverse bacterial species, indicating potential recruitment of this activity by microbial proteins secreted during various interspecies interactions. HopBY efficiently hydrolyzes NAD and specifically produces 2'cADPR, which can also be produced by TIR immune receptors of plants and by other bacteria. Intriguingly, this effector promoted bacterial virulence, indicating that 2'cADPR may not be the signaling molecule that directly initiates immunity. This study highlights a host-pathogen battleground centered around NAD metabolism and provides insight into the NAD-derived molecules involved in plant immunity.
烟酰胺腺嘌呤二核苷酸(NAD)已成为原核和真核生物免疫系统的关键组成部分。最近的发现表明 Toll/白细胞介素-1 受体(TIR)蛋白作为 NAD 水解酶(NADase)发挥作用,将 NAD 衍生的小分子与免疫信号联系起来。我们研究了病原体对宿主 NAD 代谢的操纵作为一种毒力策略。使用模型细菌病原体的泛基因组,我们从 35000 个直系同源物中进行了基于结构的相似性搜索,寻找具有潜在 NADase 活性的 III 型效应子(T3E)。鉴定出 13 种 T3E,包括 5 种新鉴定的候选物,它们具有特征性的 7 个 NAD 水解酶家族的结构域。依赖 III 型分泌系统引起疾病的大多数 菌株,至少编码一种 NAD 操纵 T3E,许多菌株有几种。我们实验证实了一种新型 T3E HopBY 的 III 型依赖性分泌,该 T3E 与 TIR 和二磷酸腺苷核糖(ADPR)环化酶均具有结构相似性。HopBY 的同源物被预测为多种细菌物种的 VI 型效应物,表明在各种种间相互作用中分泌的微生物蛋白可能招募了这种活性。HopBY 有效地水解 NAD,并特异性地产生 2'cADPR,该物质也可被植物的 TIR 免疫受体和其他细菌产生。有趣的是,这种效应物促进了细菌的毒力,表明 2'cADPR 可能不是直接引发免疫的信号分子。本研究强调了以 NAD 代谢为中心的宿主-病原体战场,并为参与植物免疫的 NAD 衍生分子提供了新的认识。