School of Data Science, The Chinese University of Hong Kong-Shenzhen, Guangdong, China.
School of Statistics and Mathematics, Zhongnan University of Economics and Law, Hubei, China.
Brief Bioinform. 2023 Mar 19;24(2). doi: 10.1093/bib/bbad042.
Feature gene selection has significant impact on the performance of cell clustering in single-cell RNA sequencing (scRNA-seq) analysis. A well-rounded feature selection (FS) method should consider relevance, redundancy and complementarity of the features. Yet most existing FS methods focus on gene relevance to the cell types but neglect redundancy and complementarity, which undermines the cell clustering performance. We develop a novel computational method GeneClust to select feature genes for scRNA-seq cell clustering. GeneClust groups genes based on their expression profiles, then selects genes with the aim of maximizing relevance, minimizing redundancy and preserving complementarity. It can work as a plug-in tool for FS with any existing cell clustering method. Extensive benchmark results demonstrate that GeneClust significantly improve the clustering performance. Moreover, GeneClust can group cofunctional genes in biological process and pathway into clusters, thus providing a means of investigating gene interactions and identifying potential genes relevant to biological characteristics of the dataset. GeneClust is freely available at https://github.com/ToryDeng/scGeneClust.
特征基因选择对单细胞 RNA 测序 (scRNA-seq) 分析中的细胞聚类性能有重大影响。全面的特征选择 (FS) 方法应该考虑特征的相关性、冗余性和互补性。然而,大多数现有的 FS 方法都侧重于基因与细胞类型的相关性,但忽略了冗余性和互补性,这会降低细胞聚类性能。我们开发了一种新的计算方法 GeneClust,用于选择 scRNA-seq 细胞聚类的特征基因。GeneClust 根据基因的表达谱对基因进行分组,然后选择旨在最大化相关性、最小化冗余性和保留互补性的基因。它可以作为任何现有细胞聚类方法的 FS 插件工具。广泛的基准结果表明,GeneClust 显著提高了聚类性能。此外,GeneClust 可以将生物过程和途径中的共功能基因分组到聚类中,从而提供一种研究基因相互作用和识别与数据集生物学特征相关的潜在基因的方法。GeneClust 可在 https://github.com/ToryDeng/scGeneClust 上免费获取。