Suppr超能文献

一种基于共功能分组的方法,用于注释单细胞 RNA-seq 分析中非冗余特征基因选择。

A cofunctional grouping-based approach for non-redundant feature gene selection in unannotated single-cell RNA-seq analysis.

机构信息

School of Data Science, The Chinese University of Hong Kong-Shenzhen, Guangdong, China.

School of Statistics and Mathematics, Zhongnan University of Economics and Law, Hubei, China.

出版信息

Brief Bioinform. 2023 Mar 19;24(2). doi: 10.1093/bib/bbad042.

Abstract

Feature gene selection has significant impact on the performance of cell clustering in single-cell RNA sequencing (scRNA-seq) analysis. A well-rounded feature selection (FS) method should consider relevance, redundancy and complementarity of the features. Yet most existing FS methods focus on gene relevance to the cell types but neglect redundancy and complementarity, which undermines the cell clustering performance. We develop a novel computational method GeneClust to select feature genes for scRNA-seq cell clustering. GeneClust groups genes based on their expression profiles, then selects genes with the aim of maximizing relevance, minimizing redundancy and preserving complementarity. It can work as a plug-in tool for FS with any existing cell clustering method. Extensive benchmark results demonstrate that GeneClust significantly improve the clustering performance. Moreover, GeneClust can group cofunctional genes in biological process and pathway into clusters, thus providing a means of investigating gene interactions and identifying potential genes relevant to biological characteristics of the dataset. GeneClust is freely available at https://github.com/ToryDeng/scGeneClust.

摘要

特征基因选择对单细胞 RNA 测序 (scRNA-seq) 分析中的细胞聚类性能有重大影响。全面的特征选择 (FS) 方法应该考虑特征的相关性、冗余性和互补性。然而,大多数现有的 FS 方法都侧重于基因与细胞类型的相关性,但忽略了冗余性和互补性,这会降低细胞聚类性能。我们开发了一种新的计算方法 GeneClust,用于选择 scRNA-seq 细胞聚类的特征基因。GeneClust 根据基因的表达谱对基因进行分组,然后选择旨在最大化相关性、最小化冗余性和保留互补性的基因。它可以作为任何现有细胞聚类方法的 FS 插件工具。广泛的基准结果表明,GeneClust 显著提高了聚类性能。此外,GeneClust 可以将生物过程和途径中的共功能基因分组到聚类中,从而提供一种研究基因相互作用和识别与数据集生物学特征相关的潜在基因的方法。GeneClust 可在 https://github.com/ToryDeng/scGeneClust 上免费获取。

相似文献

4
scBKAP: A Clustering Model for Single-Cell RNA-Seq Data Based on Bisecting K-Means.scBKAP:基于二分 K-Means 的单细胞 RNA-Seq 数据聚类模型。
IEEE/ACM Trans Comput Biol Bioinform. 2023 May-Jun;20(3):2007-2015. doi: 10.1109/TCBB.2022.3230098. Epub 2023 Jun 5.

引用本文的文献

5
Hypergraph-based analysis of weighted gene co-expression hypernetwork.基于超图的加权基因共表达超网络分析
Front Genet. 2025 Apr 4;16:1560841. doi: 10.3389/fgene.2025.1560841. eCollection 2025.

本文引用的文献

4
Feature selection revisited in the single-cell era.单细胞时代的特征选择再探讨。
Genome Biol. 2021 Dec 1;22(1):321. doi: 10.1186/s13059-021-02544-3.
7
Integrated analysis of multimodal single-cell data.多模态单细胞数据的综合分析。
Cell. 2021 Jun 24;184(13):3573-3587.e29. doi: 10.1016/j.cell.2021.04.048. Epub 2021 May 31.
10
mbkmeans: Fast clustering for single cell data using mini-batch k-means.mbkmeans:使用小批量k均值算法对单细胞数据进行快速聚类。
PLoS Comput Biol. 2021 Jan 26;17(1):e1008625. doi: 10.1371/journal.pcbi.1008625. eCollection 2021 Jan.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验