Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas.
Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas.
Curr Protoc. 2023 Feb;3(2):e675. doi: 10.1002/cpz1.675.
Transgenes with genomic DNA fragments that encompass genes of interest are the gold standard for complementing null alleles in rescue experiments in the fruit fly Drosophila melanogaster. Of particular interest are genomic DNA clones available as bacterial artificial chromosomes (BACs) or fosmids from publicly available genomic DNA libraries. Genes contained within BAC and fosmid clones can be easily modified by recombineering cloning to insert peptide or protein tags to localize, visualize, or manipulate gene products, and to create point mutations or deletions for structure-function analysis of the inserted genes. However, since transgenesis efficiency is inversely correlated with transgene size, obtaining transgenic animals for increasingly larger BAC and fosmid clones requires increasingly laborious screening efforts using the transgenesis marker commonly used for these transgenes, the dominant eye color marker white . We recently described a drug-based selectable genetic platform for Drosophila melanogaster, which included four resistance markers that allow direct selection of transgenic animals, eliminating the need to identify transgenic progeny by laborious phenotypic screening. By integrating these resistance markers into BAC transgenes, we were able to isolate animals containing large transgenes by direct selection, avoiding laborious screening. Here we present procedures on how to upgrade BAC clones by serial recombineering cloning to build both selectable and tagged BAC transgenes, for selection transgenesis and functional gene analysis, respectively. We illustrate these procedures using a BAC clone encompassing the gene encoding the synaptic vesicle protein, cysteine string protein. We demonstrate that the modified BAC clone, serially recombineered with a selectable marker for selection transgenesis and an N-terminal green fluorescent protein tag for gene expression analysis, is functional by showing the expression pattern obtained after successful selection transgenesis. The protocols cover: (1) cloning and preparation of the recombineering templates needed for serial recombineering cloning to incorporate selectable markers and protein tags; (2) preparing electrocompetent cells needed to perform serial recombineering cloning; and (3) the serial recombineering workflow to generate both selectable and tagged genomic BAC reporter transgenes for selection transgenesis and functional gene analysis in Drosophila melanogaster. The protocols we describe can be easily adapted to incorporate any of four selectable markers, protein tags, or any other modification for structure-function analysis of the genes present within any of the BAC or fosmid clones. A protocol for generating transgenic animals using serially recombineered BAC clones is presented in an accompanying Current Protocols article (Venken, Matinyan, Gonzalez, & Dierick, 2023a). © 2023 Wiley Periodicals LLC. Basic Protocol 1: Cloning and preparation of recombineering templates used for serial recombineering cloning. Basic Protocol 2: Making electrocompetent cells of the bacterial strains used to perform serial recombineering cloning or induction of plasmid copy number. Basic Protocol 3: Serial recombineering cloning to generate both selectable and tagged genomic P[acman] BAC reporter transgenes for selection transgenesis and gene expression analysis in Drosophila melanogaster.
带有包含感兴趣基因的基因组 DNA 片段的转基因是补充果蝇黑腹果蝇拯救实验中无效等位基因的金标准。特别感兴趣的是来自公共基因组 DNA 文库的细菌人工染色体 (BAC) 或 fosmid 可用的基因组 DNA 克隆。通过重组克隆很容易修饰 BAC 和 fosmid 克隆内的基因,以插入肽或蛋白标签来定位、可视化或操作基因产物,并创建点突变或缺失,以进行插入基因的结构-功能分析。然而,由于转基因的效率与转基因的大小成反比,因此需要越来越多的费力筛选工作,才能获得越来越大的 BAC 和 fosmid 克隆的转基因动物,通常使用这些转基因的显性眼色标记 white 进行筛选。我们最近描述了一种用于果蝇的基于药物的可选择遗传平台,其中包括四个抗性标记,可直接选择转基因动物,从而无需通过费力的表型筛选来鉴定转基因后代。通过将这些抗性标记整合到 BAC 转基因中,我们能够通过直接选择分离含有大转基因的动物,从而避免费力的筛选。在这里,我们介绍了如何通过连续重组克隆来升级 BAC 克隆的程序,分别构建可选择和标记的 BAC 转基因,用于选择转基因和功能基因分析。我们使用一个包含突触小泡蛋白胱氨酸串蛋白基因的 BAC 克隆来说明这些程序。我们证明,通过成功的选择转基因,显示获得的表达模式,该经过修饰的 BAC 克隆通过与用于选择转基因和 N 端绿色荧光蛋白标签的用于基因表达分析的选择标记的连续重组克隆,是有功能的。该方案包括:(1) 克隆和准备用于连续重组克隆的所需重组克隆模板,以纳入选择标记和蛋白标签;(2) 制备进行连续重组克隆所需的电感受态细胞;和 (3) 用于生成可选择和标记的基因组 BAC 报告基因转基因的连续重组克隆工作流程,用于果蝇的选择转基因和功能基因分析。我们描述的方案可以很容易地适应于任何 BAC 或 fosmid 克隆中的四个选择标记、蛋白标签或任何其他用于基因结构-功能分析的修饰。使用连续重组克隆的 BAC 克隆生成转基因动物的方案在一篇配套的 Current Protocols 文章中介绍(Venken、Matinyan、Gonzalez 和 Dierick,2023a)。© 2023 Wiley Periodicals LLC。基础方案 1:用于连续重组克隆的重组克隆模板的克隆和准备。基础方案 2:制作用于连续重组克隆或质粒拷贝数诱导的细菌菌株的电感受态细胞。基础方案 3:用于生成可选择和标记的基因组 P[acman]BAC 报告基因转基因的连续重组克隆,用于果蝇的选择转基因和基因表达分析。