Suppr超能文献

BayesGmed:一个用于贝叶斯因果中介分析的 R 包。

BayesGmed: An R-package for Bayesian causal mediation analysis.

机构信息

Centre for Epidemiology Versus Arthritis, University of Manchester, Manchester, United Kingdom.

Aberdeen Centre for Arthritis and Musculoskeletal Health (Epidemiology Group), University of Aberdeen, Aberdeen, United Kingdom.

出版信息

PLoS One. 2023 Jun 14;18(6):e0287037. doi: 10.1371/journal.pone.0287037. eCollection 2023.

Abstract

BACKGROUND

The past decade has seen an explosion of research in causal mediation analysis. However, most analytic tools developed so far rely on frequentist methods which may not be robust in the case of small sample sizes. In this paper, we propose a Bayesian approach for causal mediation analysis based on Bayesian g-formula, which will overcome the limitations of the frequentist methods.

METHODS

We created BayesGmed, an R-package for fitting Bayesian mediation models in R. The application of the methodology (and software tool) is demonstrated by a secondary analysis of data collected as part of the MUSICIAN study, a randomised controlled trial of remotely delivered cognitive behavioural therapy (tCBT) for people with chronic pain. We tested the hypothesis that the effect of tCBT would be mediated by improvements in active coping, passive coping, fear of movement and sleep problems. We then demonstrate the use of informative priors to conduct probabilistic sensitivity analysis around violations of causal identification assumptions.

RESULT

The analysis of MUSICIAN data shows that tCBT has better-improved patients' self-perceived change in health status compared to treatment as usual (TAU). The adjusted log-odds of tCBT compared to TAU range from 1.491 (95% CI: 0.452-2.612) when adjusted for sleep problems to 2.264 (95% CI: 1.063-3.610) when adjusted for fear of movement. Higher scores of fear of movement (log-odds, -0.141 [95% CI: -0.245, -0.048]), passive coping (log-odds, -0.217 [95% CI: -0.351, -0.104]), and sleep problem (log-odds, -0.179 [95% CI: -0.291, -0.078]) leads to lower odds of a positive self-perceived change in health status. The result of BayesGmed, however, shows that none of the mediated effects are statistically significant. We compared BayesGmed with the mediation R- package, and the results were comparable. Finally, our sensitivity analysis using the BayesGmed tool shows that the direct and total effect of tCBT persists even for a large departure in the assumption of no unmeasured confounding.

CONCLUSION

This paper comprehensively overviews causal mediation analysis and provides an open-source software package to fit Bayesian causal mediation models.

摘要

背景

过去十年,因果中介分析的研究呈爆炸式增长。然而,迄今为止开发的大多数分析工具都依赖于可能在小样本量情况下不稳定的频率方法。在本文中,我们提出了一种基于贝叶斯 g 公式的因果中介分析的贝叶斯方法,该方法将克服频率方法的局限性。

方法

我们创建了 BayesGmed,这是一个在 R 中拟合贝叶斯中介模型的 R 包。该方法(和软件工具)的应用通过 MUSICIAN 研究数据的二次分析得到展示,该研究是一项针对慢性疼痛患者的远程认知行为治疗(tCBT)的随机对照试验。我们检验了 tCBT 的效果是否通过积极应对、消极应对、运动恐惧和睡眠问题的改善来介导的假设。然后,我们演示了使用信息先验来进行围绕因果识别假设违反的概率敏感性分析。

结果

对 MUSICIAN 数据的分析表明,与常规治疗(TAU)相比,tCBT 使患者自我感知的健康状况改善更好。与 TAU 相比,tCBT 的调整后对数优势比范围从调整睡眠问题后的 1.491(95%CI:0.452-2.612)到调整运动恐惧后的 2.264(95%CI:1.063-3.610)。运动恐惧的得分较高(对数优势比,-0.141[95%CI:-0.245,-0.048])、消极应对(对数优势比,-0.217[95%CI:-0.351,-0.104])和睡眠问题(对数优势比,-0.179[95%CI:-0.291,-0.078])会降低健康状况自我感知改善的几率。然而,BayesGmed 的结果表明,没有一个中介效应具有统计学意义。我们将 BayesGmed 与中介 R 包进行了比较,结果是可比的。最后,我们使用 BayesGmed 工具进行的敏感性分析表明,即使在没有未测量混杂的假设有较大偏离的情况下,tCBT 的直接和总效应仍然存在。

结论

本文全面综述了因果中介分析,并提供了一个用于拟合贝叶斯因果中介模型的开源软件包。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b10d/10266612/27137b1f112d/pone.0287037.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验