Guangdong Laboratory Animals Monitoring Institute, Guangdong Key Laboratory of Laboratory Animals, Guangzhou, Guangdong, China.
School of Information Science and Technology, School of Cyber Security, Guangdong University of Foreign Studies, Guangzhou Guangdong, China.
PLoS One. 2023 Feb 9;18(2):e0281383. doi: 10.1371/journal.pone.0281383. eCollection 2023.
Currently there is no unified data classification and coding standard for the existing human disease animal model resource data worldwide. Different data classification and coding systems produce different retrieval methods. Some of these methods are inefficient and difficult to use. This research investigated the rules for the classification and coding of such data based on the Replication Methodology of Animal Models for Human Disease, the Classification and Coding Rules for Health Information Data Set (WS/T 306-2009), the Science and Technology Resource Identification (GB/T 32843-2016), the Scientific Data Management Measures (000014349/2018-00052), and The Generic Description Specification for Natural Science and Technology Resources. This research aimed to develop a classification and coding system for data obtained from human disease animal model resource based on the Internet environment to provide a standardized and unified foundation for the collection, saving, retrieval, and sharing of data from this resource.
A complete data classification and coding table compiled in the form of letters and numbers was produced, with a classification infrastructure that expanded layer by layer according to the three dimensions (namely, system diseases, animal species, and modeling methods) and essential attributes. When necessary, it adopted the hierarchy of major, intermediate, and minor categories for certain layer and also one-to-one matched the code and classification result.
Through this study, a sharing and joint construction mechanism for data from this resource can be developed by all research institutes in this field. As a case study, this research also offered technical support for constructing the database for the National Human Disease Animal Model Resource Center. The technological innovation of this paper is to derive a research oriented retrieval method, which provides technical support for the research on the current COVID-19 epidemic and on possible future epidemics.
目前,全球现有的人类疾病动物模型资源数据尚缺乏统一的数据分类和编码标准。不同的数据分类和编码系统产生不同的检索方法,有些方法效率低下,难以使用。本研究基于人类疾病动物模型复制方法学、卫生信息数据集分类与编码规则(WS/T 306-2009)、科技资源标识符(GB/T 32843-2016)、科学数据管理措施(000014349/2018-00052)和自然科技资源通用描述规范,调查了这些数据的分类和编码规则。本研究旨在基于互联网环境开发人类疾病动物模型资源数据的分类和编码系统,为该资源的数据收集、保存、检索和共享提供标准化和统一的基础。
本研究编制了一套完整的字母数字数据分类编码表,构建了一个分类基础设施,该基础设施根据系统疾病、动物物种和建模方法三个维度和基本属性逐层扩展。必要时,对某些层采用主次分类的层次结构,并对代码和分类结果进行一对一匹配。
通过本研究,可由该领域的所有研究机构共同建立该资源数据的共享和联合建设机制。作为案例研究,本研究还为国家人类疾病动物模型资源中心数据库的构建提供了技术支持。本文的技术创新是得出一种面向研究的检索方法,为当前 COVID-19 疫情和未来可能的疫情研究提供技术支持。