Suppr超能文献

使用两层前馈网络在虚拟 T 迷宫中对连续数据分类进行标准化。

Standardizing continuous data classifications in a virtual T-maze using two-layer feedforward networks.

机构信息

Julius-Maximilians-Universität Würzburg, Würzburg, Germany.

出版信息

Sci Rep. 2022 Jul 27;12(1):12879. doi: 10.1038/s41598-022-17013-5.

Abstract

There continues to be difficulties when it comes to replication of studies in the field of Psychology. In part, this may be caused by insufficiently standardized analysis methods that may be subject to state dependent variations in performance. In this work, we show how to easily adapt the two-layer feedforward neural network architecture provided by Huang to a behavioral classification problem as well as a physiological classification problem which would not be solvable in a standardized way using classical regression or "simple rule" approaches. In addition, we provide an example for a new research paradigm along with this standardized analysis method. This paradigm as well as the analysis method can be adjusted to any necessary modification or applied to other paradigms or research questions. Hence, we wanted to show that two-layer feedforward neural networks can be used to increase standardization as well as replicability and illustrate this with examples based on a virtual T-maze paradigm including free virtual movement via joystick and advanced physiological data signal processing.

摘要

在心理学领域,研究的再现仍然存在困难。部分原因可能是分析方法不够标准化,可能会受到表现状态依赖变化的影响。在这项工作中,我们展示了如何轻松地将 Huang 提供的两层前馈神经网络架构应用于行为分类问题和生理分类问题,如果使用经典回归或“简单规则”方法,这些问题是无法标准化解决的。此外,我们还提供了一个新的研究范例以及标准化分析方法的示例。这种范例以及分析方法可以根据需要进行调整,也可以应用于其他范例或研究问题。因此,我们希望表明,两层前馈神经网络可用于提高标准化和可重复性,并通过基于包括通过操纵杆进行自由虚拟移动的虚拟 T 型迷宫范例的示例来说明这一点,以及先进的生理数据信号处理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d744/9329455/f6e3a7957aac/41598_2022_17013_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验