Suppr超能文献

厚壳 InP-ZnSe 量子点的化学结构、集合和单粒子光谱。

Chemical Structure, Ensemble and Single-Particle Spectroscopy of Thick-Shell InP-ZnSe Quantum Dots.

机构信息

Department of Interdisciplinary Materials Science, ‡Vanderbilt Institute for Nanoscale Science and Engineering, §Department of Chemistry, ∥Department of Physics and Astronomy, and ⊥Department of Pharmacology, Chemical and Biomolecular Engineering, Vanderbilt University , Nashville, Tennessee 37235, United States.

出版信息

Nano Lett. 2018 Feb 14;18(2):709-716. doi: 10.1021/acs.nanolett.7b03703. Epub 2018 Jan 2.

Abstract

Thick-shell (>5 nm) InP-ZnSe colloidal quantum dots (QDs) grown by a continuous-injection shell growth process are reported. The growth of a thick crystalline shell is attributed to the high temperature of the growth process and the relatively low lattice mismatch between the InP core and ZnSe shell. In addition to a narrow ensemble photoluminescence (PL) line-width (∼40 nm), ensemble and single-particle emission dynamics measurements indicate that blinking and Auger recombination are reduced in these heterostructures. More specifically, high single-dot ON-times (>95%) were obtained for the core-shell QDs, and measured ensemble biexciton lifetimes, τ ∼ 540 ps, represent a 7-fold increase compared to InP-ZnS QDs. Further, high-resolution energy dispersive X-ray (EDX) chemical maps directly show for the first time significant incorporation of indium into the shell of the InP-ZnSe QDs. Examination of the atomic structure of the thick-shell QDs by high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) reveals structural defects in subpopulations of particles that may mitigate PL efficiencies (∼40% in ensemble), providing insight toward further synthetic refinement. These InP-ZnSe heterostructures represent progress toward fully cadmium-free QDs with superior photophysical properties important in biological labeling and other emission-based technologies.

摘要

本文报道了通过连续注入壳生长工艺生长的厚壳(>5nm)InP-ZnSe 胶体量子点(QD)。厚壳的生长归因于生长过程的高温和 InP 核与 ZnSe 壳之间相对较低的晶格失配。除了窄的集合体光致发光(PL)线宽(约 40nm)外,集合体和单粒子发射动力学测量表明,这些异质结构中的闪烁和俄歇复合减少了。更具体地说,对于核壳 QD 获得了高的单点开启时间(>95%),并且测量的集合体双激子寿命τ∼540ps,与 InP-ZnS QD 相比增加了 7 倍。此外,高分辨率能量色散 X 射线(EDX)化学图谱首次直接表明铟大量掺入 InP-ZnSe QD 的壳中。通过高角度环形暗场扫描透射电子显微镜(HAADF-STEM)对厚壳 QD 的原子结构进行检查,揭示了颗粒子群中的结构缺陷,这可能会降低 PL 效率(集合体中约为 40%),为进一步的合成改进提供了思路。这些 InP-ZnSe 异质结构代表了在生物标记和其他基于发射的技术中具有重要光电性能的完全无镉 QD 的进展。

相似文献

2
Engineering Brightness Matched Indium Phosphide Quantum Dots.工程化亮度匹配的磷化铟量子点。
Chem Mater. 2021 Mar 23;33(6):1964-1975. doi: 10.1021/acs.chemmater.0c03181. Epub 2021 Mar 5.

引用本文的文献

7
Engineering Brightness Matched Indium Phosphide Quantum Dots.工程化亮度匹配的磷化铟量子点。
Chem Mater. 2021 Mar 23;33(6):1964-1975. doi: 10.1021/acs.chemmater.0c03181. Epub 2021 Mar 5.

本文引用的文献

2
Probing the Cytotoxicity Of Semiconductor Quantum Dots.探究半导体量子点的细胞毒性
Nano Lett. 2004 Jan 1;4(1):11-18. doi: 10.1021/nl0347334. Epub 2003 Dec 10.
5
Spectroscopic and Device Aspects of Nanocrystal Quantum Dots.纳米晶量子点的光谱和器件方面。
Chem Rev. 2016 Sep 28;116(18):10513-622. doi: 10.1021/acs.chemrev.6b00169.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验