Plant Breeding Institute, Christian-Albrechts-University of Kiel, Am Botanischen Garten 1-9, 24118, Kiel, Germany.
NPZ Innovation GmbH, Hohenlieth-Hof, 24363, Holtsee, Germany.
Sci Rep. 2023 Feb 9;13(1):2344. doi: 10.1038/s41598-023-28661-6.
The presence of anti-nutritive compounds like glucosinolates (GSLs) in the rapeseed meal severely restricts its utilization as animal feed. Therefore, reducing the GSL content to < 18 µmol/g dry weight in the seeds is a major breeding target. While candidate genes involved in the biosynthesis of GSLs have been described in rapeseed, comprehensive functional analyses are missing. By knocking out the aliphatic GSL biosynthesis genes BnMYB28 and BnCYP79F1 encoding an R2R3 MYB transcription factor and a cytochrome P450 enzyme, respectively, we aimed to reduce the seed GSL content in rapeseed. After expression analyses on single paralogs, we used an ethyl methanesulfonate (EMS) treated population of the inbred winter rapeseed 'Express617' to detect functional mutations in the two gene families. Our results provide the first functional analysis by knock-out for the two GSL biosynthesis genes in winter rapeseed. We demonstrate that independent knock-out mutants of the two genes possessed significantly reduced seed aliphatic GSLs, primarily progoitrin. Compared to the wildtype Express617 control plants (36.3 µmol/g DW), progoitrin levels were decreased by 55.3% and 32.4% in functional mutants of BnMYB28 (16.20 µmol/g DW) and BnCYP79F1 (24.5 µmol/g DW), respectively. Our study provides a strong basis for breeding rapeseed with improved meal quality in the future.
菜籽油粕中存在抗营养化合物,如硫代葡萄糖苷(GSLs),严重限制了其作为动物饲料的利用。因此,将种子中 GSL 的含量降低到<18µmol/g 干重是主要的育种目标。虽然油菜籽中涉及 GSL 生物合成的候选基因已经被描述,但缺乏全面的功能分析。通过敲除脂肪族 GSL 生物合成基因 BnMYB28 和 BnCYP79F1,分别编码 R2R3 MYB 转录因子和细胞色素 P450 酶,我们旨在降低油菜籽种子中的 GSL 含量。在对单个同源基因进行表达分析后,我们利用 EMS 处理的自交冬油菜 'Express617' 群体,检测这两个基因家族中的功能突变。我们的结果提供了对冬油菜中两个 GSL 生物合成基因进行敲除的首次功能分析。我们证明,这两个基因的独立敲除突变体种子中的脂肪族 GSLs,主要是前芸苔素,含量显著降低。与野生型 Express617 对照植株(36.3µmol/g DW)相比,BnMYB28 (16.20µmol/g DW)和 BnCYP79F1 (24.5µmol/g DW)的功能突变体中前芸苔素水平分别降低了 55.3%和 32.4%。我们的研究为未来培育改善油粕质量的油菜籽提供了坚实的基础。