Translational Nanobiology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.
Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
J Extracell Vesicles. 2023 Feb;12(2):e12299. doi: 10.1002/jev2.12299.
Flow cytometry (FCM) offers a multiparametric technology capable of characterizing single extracellular vesicles (EVs). However, most flow cytometers are designed to detect cells, which are larger than EVs. Whereas cells exceed the background noise, signals originating from EVs partly overlap with the background noise, thereby making EVs more difficult to detect than cells. This technical mismatch together with complexity of EV-containing fluids causes limitations and challenges with conducting, interpreting and reproducing EV FCM experiments. To address and overcome these challenges, researchers from the International Society for Extracellular Vesicles (ISEV), International Society for Advancement of Cytometry (ISAC), and the International Society on Thrombosis and Haemostasis (ISTH) joined forces and initiated the EV FCM working group. To improve the interpretation, reporting, and reproducibility of future EV FCM data, the EV FCM working group published an ISEV position manuscript outlining a framework of minimum information that should be reported about an FCM experiment on single EVs (MIFlowCyt-EV). However, the framework contains limited background information. Therefore, the goal of this compendium is to provide the background information necessary to design and conduct reproducible EV FCM experiments. This compendium contains background information on EVs, the interaction between light and EVs, FCM hardware, experimental design and preanalytical procedures, sample preparation, assay controls, instrument data acquisition and calibration, EV characterization, and data reporting. Although this compendium focuses on EVs, many concepts and explanations could also be applied to FCM detection of other particles within the EV size range, such as bacteria, lipoprotein particles, milk fat globules, and viruses.
流式细胞术(FCM)提供了一种能够对单个细胞外囊泡(EV)进行多参数分析的技术。然而,大多数流式细胞仪是为检测细胞而设计的,而细胞的体积大于 EV。虽然细胞的信号可以超过背景噪音,但 EV 的信号部分与背景噪音重叠,因此 EV 的检测比细胞更具挑战性。这种技术不匹配以及包含 EV 的流体的复杂性给 EV FCM 实验的进行、解释和复制带来了限制和挑战。为了解决这些挑战,来自国际细胞外囊泡学会(ISEV)、国际细胞分析学会(ISAC)和国际血栓与止血学会(ISTH)的研究人员联合起来成立了 EV FCM 工作组。为了提高未来 EV FCM 数据的解释、报告和可重复性,EV FCM 工作组发表了一份 ISEV 立场文件,概述了一个关于单个 EV 的 FCM 实验应报告的最低信息量的框架(MIFlowCyt-EV)。然而,该框架包含的背景信息有限。因此,本纲要的目标是提供设计和进行可重复的 EV FCM 实验所需的背景信息。本纲要包含了关于 EV 的背景信息、光与 EV 之间的相互作用、FCM 硬件、实验设计和预分析程序、样品制备、检测对照、仪器数据采集和校准、EV 特征和数据报告。尽管本纲要重点介绍了 EV,但许多概念和解释也可以应用于 FCM 检测 EV 范围内的其他颗粒,如细菌、脂蛋白颗粒、乳脂球和病毒。