将细胞外囊泡(EVs)的无标记表面增强拉曼光谱(SERS)与拉曼标记相结合,以增强卵巢癌诊断。
Integration of label-free surface enhanced Raman spectroscopy (SERS) of extracellular vesicles (EVs) with Raman tagged labels to enhance ovarian cancer diagnostics.
作者信息
He Qing, Koster Hanna J, O'Sullivan Justin, Ono Samantha G, O'Toole Hannah J, Leiserowitz Gary S, Heffern Marie C, Carney Randy P
机构信息
Department of Biomedical Engineering, University of California, Davis, USA.
Department of Chemistry, University of California, Davis, USA.
出版信息
Biosens Bioelectron. 2025 Nov 15;288:117800. doi: 10.1016/j.bios.2025.117800. Epub 2025 Jul 18.
We report a proof-of-concept diagnostic strategy that integrates multiplexed Raman-tagged antibody labeling with label-free surface-enhanced Raman spectroscopy (SERS) and machine learning (ML) to improve the detection of ovarian cancer via extracellular vesicles (EVs). EVs were isolated from patient plasma using size-exclusion chromatography and labeled with polyyne-based Raman tags targeting three ovarian cancer biomarkers: CA-125, HE4, and CA-19-9. Labeled and unlabeled EVs were deposited onto SERS-active substrates, and spectra were collected using a custom confocal Raman microscope. Incorporating the tag-derived signal into SERS analysis enhanced interpretability and added molecular specificity. We evaluated classification performance using various ML models applied to spectral datasets from a cohort of ovarian cancer patients and healthy controls. Combined use of the Raman tag and label-free regions improved classification accuracy compared to either modality alone. Notably, support vector machine (SVM) achieved over 95 % accuracy, sensitivity, and specificity. Compared to ELISA, our SERS platform demonstrated improved sensitivity in detecting EV-associated biomarkers from small sample volumes. This approach addresses a key limitation of SERS-based diagnostics by linking spectral features to known biomarkers, offering improved transparency and performance in ML-enabled liquid biopsy.
我们报告了一种概念验证诊断策略,该策略将多重拉曼标记抗体标记与无标记表面增强拉曼光谱(SERS)和机器学习(ML)相结合,以通过细胞外囊泡(EVs)改善卵巢癌的检测。使用尺寸排阻色谱法从患者血浆中分离出EVs,并用靶向三种卵巢癌生物标志物CA-125、HE4和CA-19-9的基于聚炔的拉曼标签进行标记。将标记和未标记的EVs沉积在SERS活性底物上,并使用定制的共聚焦拉曼显微镜收集光谱。将标签衍生信号纳入SERS分析可增强可解释性并增加分子特异性。我们使用应用于一组卵巢癌患者和健康对照的光谱数据集的各种ML模型评估分类性能。与单独使用任何一种模式相比,拉曼标签和无标记区域的联合使用提高了分类准确性。值得注意的是,支持向量机(SVM)的准确率、灵敏度和特异性均超过95%。与酶联免疫吸附测定(ELISA)相比,我们的SERS平台在从小样本量中检测EV相关生物标志物方面表现出更高的灵敏度。这种方法通过将光谱特征与已知生物标志物联系起来,解决了基于SERS的诊断的一个关键限制,在基于ML的液体活检中提供了更高的透明度和性能。