Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy.
Department of Chemical, Pharmaceutical, and Agricultural Sciences, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy.
J Org Chem. 2023 May 19;88(10):6454-6464. doi: 10.1021/acs.joc.2c02952. Epub 2023 Feb 10.
Herein, we report our study on the design and development of a novel photocarboxylation method. We have used an organic photoredox catalyst (PC, 4CzIPN) and differently substituted dihydropyridines (DHPs) in combination with an organic base (1,5,7-triazabicyclodec-5-ene, TBD) to access a proton-coupled electron transfer (PCET) based manifold. In depth mechanistic investigations merging experimental analysis (NMR, IR, cyclic voltammetry) and density-functional theory (DFT) calculations reveal the key activity of a H-bonding complex between the DHP and the base. The thermodynamic and kinetic benefits of the PCET mechanism allowed the implementation of a redox-neutral fixation process leading to synthetically relevant carboxylic acids (18 examples with isolated yields up to 75%) under very mild reaction conditions. Finally, diverse product manipulations were performed to demonstrate the synthetic versatility of the obtained products.
在此,我们报告了一项关于新型光羧化方法设计和开发的研究。我们使用了有机光氧化还原催化剂(PC,4CzIPN)和不同取代的二氢吡啶(DHPs),结合有机碱(1,5,7-三氮杂双环[5.4.0]十一碳-7-烯,TBD),以获得基于质子耦合电子转移(PCET)的多相。通过合并实验分析(NMR、IR、循环伏安法)和密度泛函理论(DFT)计算的深入机理研究,揭示了 DHP 和碱之间氢键复合物的关键活性。PCET 机制的热力学和动力学优势允许实施还原中性固定过程,从而在非常温和的反应条件下得到具有合成相关性的羧酸(18 个实例,分离产率高达 75%)。最后,进行了各种产物操作,以证明所获得产物的合成多功能性。