Suppr超能文献

metC基因的破坏影响胡萝卜软腐果胶杆菌胡萝卜软腐亚种Pcc21中的蛋氨酸生物合成并减轻软腐病。

Disruption of the metC Gene Affects Methionine Biosynthesis in Pectobacterium carotovorum subsp. carotovorum Pcc21 and Reduces Soft-Rot Disease.

作者信息

Yu Seonmi, Kang Jihee, Chung Eui-Hwan, Lee Yunho

机构信息

Department of Food Science and Biotechnology, CHA University, Pocheon 11160, Korea.

Department of Plant Biotechnology, Korea University, Seoul 02841, Korea.

出版信息

Plant Pathol J. 2023 Feb;39(1):62-74. doi: 10.5423/PPJ.OA.09.2022.0135. Epub 2023 Feb 1.

Abstract

Plant pathogenic Pectobacterium species cause severe soft rot/blackleg diseases in many economically important crops worldwide. Pectobacterium utilizes plant cell wall degrading enzymes (PCWDEs) as the main virulence determinants for its pathogenicity. In this study, we screened a random mutant, M29 is a transposon insertion mutation in the metC gene encoding cystathionine β-lyase that catalyzes cystathionine to homocysteine at the penultimate step in methionine biosynthesis. M29 became a methionine auxotroph and resulted in growth defects in methionine-limited conditions. Impaired growth was restored with exogenous methionine or homocysteine rather than cystathionine. The mutant exhibited reduced soft rot symptoms in Chinese cabbages and potato tubers, maintaining activities of PCWDEs and swimming motility. The mutant was unable to proliferate in both Chinese cabbages and potato tubers. The reduced virulence was partially restored by a complemented strain or 100 µM of methionine, whereas it was fully restored by the extremely high concentration (1 mM). Our transcriptomic analysis showed that genes involved in methionine biosynthesis or transporter were downregulated in the mutant. Our results demonstrate that MetC is important for methionine biosynthesis and transporter and influences its virulence through Pcc21 multiplication in plant hosts.

摘要

植物致病果胶杆菌在全球许多具有重要经济价值的作物中引发严重的软腐病/黑胫病。果胶杆菌利用植物细胞壁降解酶(PCWDEs)作为其致病性的主要毒力决定因素。在本研究中,我们筛选了一个随机突变体,M29是编码胱硫醚β-裂解酶的metC基因中的转座子插入突变,该酶在蛋氨酸生物合成的倒数第二步催化胱硫醚生成高半胱氨酸。M29变成了蛋氨酸营养缺陷型,在蛋氨酸限制条件下导致生长缺陷。外源性蛋氨酸或高半胱氨酸而非胱硫醚可恢复受损的生长。该突变体在大白菜和马铃薯块茎中表现出减轻的软腐症状,同时保持PCWDEs的活性和游动能力。该突变体在大白菜和马铃薯块茎中均无法增殖。互补菌株或100 µM蛋氨酸可部分恢复其降低的毒力,而极高浓度(1 mM)可使其完全恢复。我们的转录组分析表明,参与蛋氨酸生物合成或转运的基因在突变体中表达下调。我们的结果表明,MetC对蛋氨酸生物合成和转运很重要,并通过Pcc21在植物宿主中的增殖影响其毒力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ace3/9929172/142a040c4506/ppj-oa-09-2022-0135f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验