Cho Youngseul, Lee Kyu Sang, Piao Shuqing, Kim Taek-Gyoung, Kang Seong-Kyun, Park Sang Yoon, Yoo Kwanghyun, Piao Yuanzhe
Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University 145 Gwanggyo-ro, Yeongtong-gu Suwon-Si Gyeonggi-do 16229 Republic of Korea
Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University 145 Gwanggyo-ro, Yeongtong-gu Suwon-Si Gyeonggi-do 16229 Republic of Korea.
RSC Adv. 2023 Feb 3;13(7):4656-4668. doi: 10.1039/d2ra07469a. eCollection 2023 Jan 31.
Silicon microparticles (SiMPs) show considerable promise as an anode material in high-performance lithium-ion batteries (LIBs) because of their low-cost starting material and high capacity. The failure issues associated with the intrinsically low conductivity and significant volume expansion of Si have largely been resolved by designing silicon/carbon composites using carbon nanotubes (CNTs). The CNTs are important in terms of stress dissipation and the conductive network in Si/CNT composites. Here, we synthesized a SiMP/2D CNT sheet wrapping composite (SiMP/CNT wrapping) a facile freeze-drying method with the use of highly dispersed single-walled CNTs. In this work, the well-dispersed CNTs are easily mixed with Si, resulting in effective CNT wrapping on the SiMP surface. During freeze-drying, the CNTs are self-assembled into a segregated 2D CNT sheet morphology van der Waals interactions. The resulting CNT wrapping shows a unique wide range of conductive networks and mesh-like CNT sheets with void spaces. The SiMP/CNT wrapping 9 : 1 electrode exhibits good rate and cycle performance. The first charge/discharge capacity of SiMP/CNT wrapping 9 : 1 is 3160.7 mA h g/3469.1 mA h g at 0.1 A g with superior initial coulombic efficiency of 91.11%. After cycling, the SiMP/CNT wrapping electrode shows good structural integrity with preserved electrical conductivity. The superior electrochemical performance of the SiMP/CNT wrapping composite can be explained by an extensive conductive CNT network on the SiMPs and facile lithium-ion diffusion mesh-like CNT wrapping.
硅微粒(SiMPs)因其低成本的起始材料和高容量,在高性能锂离子电池(LIBs)中作为负极材料展现出巨大潜力。通过使用碳纳米管(CNTs)设计硅/碳复合材料,很大程度上解决了与硅固有的低导电性和显著体积膨胀相关的失效问题。碳纳米管在硅/碳纳米管复合材料的应力耗散和导电网络方面很重要。在此,我们采用一种简便的冷冻干燥方法,利用高度分散的单壁碳纳米管合成了一种SiMP/二维碳纳米管片包裹复合材料(SiMP/CNT包裹)。在这项工作中,充分分散的碳纳米管很容易与硅混合,从而在SiMP表面实现有效的碳纳米管包裹。在冷冻干燥过程中,碳纳米管通过范德华相互作用自组装成隔离的二维碳纳米管片形态。由此产生的碳纳米管包裹呈现出独特的广泛导电网络和带有空隙的网状碳纳米管片。SiMP/CNT包裹9∶1电极展现出良好的倍率性能和循环性能。SiMP/CNT包裹9∶1在0.1 A g下的首次充/放电容量分别为3160.7 mA h g/3469.1 mA h g,初始库仑效率高达91.11%。循环后,SiMP/CNT包裹电极显示出良好的结构完整性并保留了导电性。SiMP/CNT包裹复合材料优异的电化学性能可归因于SiMPs上广泛的导电碳纳米管网络以及通过网状碳纳米管包裹实现的锂离子快速扩散。