Xia Mengting, Chen Bingjie, Gu Feng, Zu Lianhai, Xu Mengzhu, Feng Yutong, Wang Zhijun, Zhang Haijiao, Zhang Chi, Yang Jinhu
School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, P. R. China.
Research Center for Translational Medicine & Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, No. 150 Jimo Road, Shanghai 200120, P. R. China.
ACS Nano. 2020 Apr 28;14(4):5111-5120. doi: 10.1021/acsnano.0c01976. Epub 2020 Apr 13.
Exploring Si-based anode materials with high electrical conductivity and electrode stability is crucial for high-performance lithium-ion batteries (LIBs). Herein, we propose the fabrication of a Si-based composite where Si porous nanospheres (Si p-NSs) are tightly wrapped by TiCT (T stands for the surface groups such as -OH, -F) MXene nanosheets (TNSs) through an interfacial assembly strategy. The TNSs as a conductive and robust tight of the Si p-NSs can effectively improve electron transport and electrode stability, as revealed by substantial characterizations and mechanical simulations. Moreover, the TNSs with rich surface groups enable strong interfacial interactions with the Si p-NS component and a pseudocapacitive behavior, beneficial for fast and stable lithium storage. Consequently, the Si p-NS@TNSs electrode with a high Si content of 85.6% exhibits significantly enhanced battery performance compared with the Si p-NSs electrode such as high reversible capacity (1154 mAh g at 0.2 A g), long cycling stability (up to 2000 cycles with a 0.026% capacity decay rate per cycle), and excellent rate performances. Notably, the Si p-NS@TNSs electrode-based LIB full cell delivers a high energy uptake of 405 Wh kg, many-times higher than that of the Si p-NSs full cell. This work offers a strategy to develop advanced Si-based anode materials with desirable properties for high-performance LIBs.
探索具有高电导率和电极稳定性的硅基负极材料对于高性能锂离子电池(LIBs)至关重要。在此,我们提出通过界面组装策略制备一种硅基复合材料,其中硅多孔纳米球(Si p-NSs)被TiCT(T代表诸如-OH、-F等表面基团)MXene纳米片(TNSs)紧密包裹。大量表征和力学模拟表明,作为Si p-NSs导电且坚固包覆层的TNSs能够有效改善电子传输和电极稳定性。此外,具有丰富表面基团的TNSs与Si p-NS组分之间具有很强的界面相互作用以及赝电容行为,有利于快速稳定的锂存储。因此,Si含量高达85.6%的Si p-NS@TNSs电极与Si p-NSs电极相比,展现出显著增强的电池性能,如高可逆容量(在0.2 A g下为1154 mAh g)、长循环稳定性(高达2000次循环,每次循环容量衰减率为0.026%)以及优异的倍率性能。值得注意的是,基于Si p-NS@TNSs电极的LIB全电池具有405 Wh kg的高能量摄取,比Si p-NSs全电池高出许多倍。这项工作提供了一种策略,用于开发具有理想性能的先进硅基负极材料,以用于高性能LIBs。