Suppr超能文献

采用排列有序的多孔电极结构促进锂离子电池中的传输动力学

Promoting Transport Kinetics in Li-Ion Battery with Aligned Porous Electrode Architectures.

作者信息

Zhang Xiao, Ju Zhengyu, Housel Lisa M, Wang Lei, Zhu Yue, Singh Gurpreet, Sadique Nahian, Takeuchi Kenneth J, Takeuchi Esther S, Marschilok Amy C, Yu Guihua

机构信息

Materials Science and Engineering Program and Department of Mechanical Engineering , The University of Texas at Austin , Austin , Texas 78712 , United States.

Department of Chemistry , Stony Brook University , Stony Brook , New York 11794 , United States.

出版信息

Nano Lett. 2019 Nov 13;19(11):8255-8261. doi: 10.1021/acs.nanolett.9b03824. Epub 2019 Nov 1.

Abstract

Developing scalable energy storage systems with high energy and power densities is essential to meeting the ever-growing portable electronics and electric vehicle markets, which calls for development of thick electrode designs to improve the active material loading and greatly enhance the overall energy density. However, rate capabilities in lithium-ion batteries usually fall off rapidly with increasing electrode thickness due to hindered ionic transport kinetics, which is especially the issue for conversion-based electroactive materials. To alleviate the transport constrains, rational design of three-dimensional porous electrodes with aligned channels is critically needed. Herein, magnetite (FeO) with high theoretical capacity is employed as a model material, and with the assistance of micrometer-sized graphine oxide (GO) sheets, aligned FeO/GO (AGF) electrodes with well-defined ionic transport channels are formed through a facile ice-templating method. The as-fabricated AGF electrodes exhibit excellent rate capacity compared with conventional slurry-casted electrodes with an areal capacity of ∼3.6 mAh·cm under 10 mA·cm. Furthermore, clear evidence provided by galvanostatic charge-discharge profiles, cyclic voltammetry, and symmetric cell electrochemical impedance spectroscopy confirms the facile ionic transport kinetics in this proposed design.

摘要

开发具有高能量和功率密度的可扩展储能系统对于满足不断增长的便携式电子产品和电动汽车市场至关重要,这就需要开发厚电极设计以提高活性材料负载量并大幅提高整体能量密度。然而,由于离子传输动力学受阻,锂离子电池的倍率性能通常会随着电极厚度的增加而迅速下降,这对于基于转化的电活性材料来说尤其如此。为了缓解传输限制,迫切需要合理设计具有排列通道的三维多孔电极。在此,具有高理论容量的磁铁矿(Fe₃O₄)被用作模型材料,并在微米尺寸的氧化石墨烯(GO)片的辅助下,通过简便的冰模板法形成了具有明确离子传输通道的排列的Fe₃O₄/GO(AGF)电极。与在10 mA·cm⁻²下面积容量约为3.6 mAh·cm⁻²的传统浆料浇铸电极相比,所制备的AGF电极表现出优异的倍率性能。此外,恒电流充放电曲线、循环伏安法和对称电池电化学阻抗谱提供的明确证据证实了该设计中离子传输动力学的简便性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验