Gupta Astha, Sharma Tripti, Singh Surendra Pratap, Bhardwaj Archana, Srivastava Deepti, Kumar Rajendra
Sharda School of Agricultural Sciences, Sharda University, Greater Noida, India.
Plant Molecular Biology Laboratory, Department of Botany, Dayanand Anglo-Vedic (PG) College, Chhatrapati Shahu Ji Maharaj University,, Kanpur, India.
Front Genet. 2023 Jan 25;14:1053810. doi: 10.3389/fgene.2023.1053810. eCollection 2023.
Nutrient deficiency has resulted in impaired growth and development of the population globally. Microgreens are considered immature greens (required light for photosynthesis and growing medium) and developed from the seeds of vegetables, legumes, herbs, and cereals. These are considered "living superfood/functional food" due to the presence of chlorophyll, beta carotene, lutein, and minerals like magnesium (Mg), Potassium (K), Phosphorus (P), and Calcium (Ca). Microgreens are rich at the nutritional level and contain several phytoactive compounds (carotenoids, phenols, glucosinolates, polysterols) that are helpful for human health on Earth and in space due to their anti-microbial, anti-inflammatory, antioxidant, and anti-carcinogenic properties. Microgreens can be used as plant-based nutritive vegetarian foods that will be fruitful as a nourishing constituent in the food industryfor garnish purposes, complement flavor, texture, and color to salads, soups, flat-breads, pizzas, and sandwiches (substitute to lettuce in tacos, sandwich, burger). Good handling practices may enhance microgreens'stability, storage, and shelf-life under appropriate conditions, including light, temperature, nutrients, humidity, and substrate. Moreover, the substrate may be a nutritive liquid solution (hydroponic system) or solid medium (coco peat, coconut fiber, coir dust and husks, sand, vermicompost, sugarcane filter cake, ) based on a variety of microgreens. However integrated multiomics approaches alongwith nutriomics and foodomics may be explored and utilized to identify and breed most potential microgreen genotypes, biofortify including increasing the nutritional content (macro-elements:K, Ca and Mg; oligo-elements: Fe and Zn and antioxidant activity) and microgreens related other traits viz., fast growth, good nutritional values, high germination percentage, and appropriate shelf-life through the implementation of integrated approaches includes genomics, transcriptomics, sequencing-based approaches, molecular breeding, machine learning, nanoparticles, and seed priming strategiesetc.
营养缺乏已导致全球人口的生长发育受损。微型蔬菜被认为是未成熟的绿色蔬菜(需要光照进行光合作用和生长介质),由蔬菜、豆类、草本植物和谷物的种子发育而来。由于含有叶绿素、β-胡萝卜素、叶黄素以及镁(Mg)、钾(K)、磷(P)和钙(Ca)等矿物质,这些微型蔬菜被视为“活的超级食物/功能性食品”。微型蔬菜在营养层面很丰富,并且含有多种植物活性化合物(类胡萝卜素、酚类、硫代葡萄糖苷、多甾醇),由于它们具有抗菌、抗炎、抗氧化和抗癌特性,因此对地球上和太空中的人类健康都有帮助。微型蔬菜可用作基于植物的营养素食食品,作为食品工业中的一种营养成分用于装饰目的,为沙拉、汤、薄饼、披萨和三明治增添风味、质地和颜色(可替代玉米卷、三明治、汉堡中的生菜)。良好的处理方法可以在适当条件下(包括光照、温度、营养、湿度和基质)提高微型蔬菜的稳定性、储存性和保质期。此外,根据不同种类的微型蔬菜,基质可以是营养液(水培系统)或固体介质(椰糠、椰子纤维、椰壳粉和椰壳、沙子、蚯蚓堆肥、甘蔗滤饼等)。然而,可以探索和利用综合多组学方法以及营养组学和食品组学来识别和培育最具潜力的微型蔬菜基因型,通过实施包括基因组学、转录组学、基于测序的方法、分子育种、机器学习、纳米颗粒和种子引发策略等综合方法来进行生物强化,包括增加营养成分(宏量元素:钾、钙和镁;微量元素:铁和锌以及抗氧化活性)以及微型蔬菜的其他相关性状,即快速生长、良好的营养价值、高发芽率和适当的保质期。