Suppr超能文献

鹰嘴豆生物强化用于细胞分裂素脱氢酶基因组编辑以增强非生物和生物胁迫耐受性及粮食安全。

Chickpea Biofortification for Cytokinin Dehydrogenase Genome Editing to Enhance Abiotic-Biotic Stress Tolerance and Food Security.

作者信息

Mahto Rohit Kumar, Singh Charul, Chandana B S, Singh Rajesh Kumar, Verma Shruti, Gahlaut Vijay, Manohar Murli, Yadav Neelam, Kumar Rajendra

机构信息

Indian Agricultural Research Institute (ICAR), New Delhi, India.

Department of Genetics and Plant Breeding, UAS, Bangalore, India.

出版信息

Front Genet. 2022 May 20;13:900324. doi: 10.3389/fgene.2022.900324. eCollection 2022.

Abstract

Globally more than two billion people suffer from micronutrient malnutrition (also known as "hidden hunger"). Further, the pregnant women and children in developing nations are mainly affected by micronutrient deficiencies. One of the most important factors is food insecurity which can be mitigated by improving the nutritional values through biofortification using selective breeding and genetic enhancement techniques. Chickpea is the second most important legume with numerous economic and nutraceutical properties. Therefore, chickpea production needs to be increased from the current level. However, various kind of biotic and abiotic stresses hamper global chickpea production. The emerging popular targets for biofortification in agronomic crops include targeting cytokinin dehydrogenase (). The play essential roles in both physiological and developmental processes and directly impact several agronomic parameters i.e., growth, development, and yield. Manipulation of genes using genome editing tools in several crop plants reveal that are involved in regulation yield, shoot and root growth, and minerals nutrition. Therefore, have become popular targets for yield improvement, their overexpression and mutants can be directly correlated with the increased yield and tolerance to various stresses. Here, we provide detailed information on the different roles of genes in chickpea. In the end, we discuss the utilization of genome editing tool clustered regularly interspaced short palindromic repeats/CRISPR associated protein 9 (CRISPR/Cas9) to engineer genes that can facilitate trait improvement. Overall, recent advancements in and their role in plant growth, stresses and nutrient accumulation are highlighted, which could be used for chickpea improvement.

摘要

全球有超过20亿人患有微量营养素营养不良(也称为“隐性饥饿”)。此外,发展中国家的孕妇和儿童主要受到微量营养素缺乏的影响。最重要的因素之一是粮食不安全,这可以通过使用选择性育种和基因增强技术进行生物强化来提高营养价值从而得到缓解。鹰嘴豆是第二重要的豆类,具有众多经济和营养特性。因此,需要将鹰嘴豆产量从目前的水平提高。然而,各种生物和非生物胁迫阻碍了全球鹰嘴豆生产。农艺作物生物强化中新兴的热门目标包括靶向细胞分裂素脱氢酶()。 在生理和发育过程中都起着至关重要的作用,并直接影响几个农艺参数,即生长、发育和产量。在几种作物中使用基因组编辑工具对 基因进行操作表明, 参与调节产量、地上部和根部生长以及矿物质营养。因此, 已成为提高产量的热门目标,它们的过表达和突变体可以直接与产量增加和对各种胁迫的耐受性相关联。在这里,我们提供了关于 基因在鹰嘴豆中不同作用的详细信息。最后,我们讨论了利用基因组编辑工具成簇规律间隔短回文重复序列/CRISPR相关蛋白9(CRISPR/Cas9)来改造 基因,以促进性状改良。总体而言,强调了 的最新进展及其在植物生长、胁迫和养分积累中的作用,这些可用于鹰嘴豆改良。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0851/9164125/915ffbe081a2/fgene-13-900324-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验