Suppr超能文献

利用基因组资源探索鹰嘴豆种质多样性以拓宽遗传基础

Exploring Chickpea Germplasm Diversity for Broadening the Genetic Base Utilizing Genomic Resourses.

作者信息

Singh Rajesh Kumar, Singh Charul, Chandana B S, Mahto Rohit K, Patial Ranjana, Gupta Astha, Gahlaut Vijay, Hamwieh Aladdin, Upadhyaya H D, Kumar Rajendra

机构信息

Indian Agricultural Research Institute (ICAR), New Delhi, India.

University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India.

出版信息

Front Genet. 2022 Aug 4;13:905771. doi: 10.3389/fgene.2022.905771. eCollection 2022.

Abstract

Legume crops provide significant nutrition to humans as a source of protein, omega-3 fatty acids as well as specific macro and micronutrients. Additionally, legumes improve the cropping environment by replenishing the soil nitrogen content. Chickpeas are the second most significant staple legume food crop worldwide behind dry bean which contains 17%-24% protein, 41%-51% carbohydrate, and other important essential minerals, vitamins, dietary fiber, folate, β-carotene, anti-oxidants, micronutrients (phosphorus, calcium, magnesium, iron, and zinc) as well as linoleic and oleic unsaturated fatty acids. Despite these advantages, legumes are far behind cereals in terms of genetic improvement mainly due to far less effort, the bottlenecks of the narrow genetic base, and several biotic and abiotic factors in the scenario of changing climatic conditions. Measures are now called for beyond conventional breeding practices to strategically broadening of narrow genetic base utilizing chickpea wild relatives and improvement of cultivars through advanced breeding approaches with a focus on high yield productivity, biotic and abiotic stresses including climate resilience, and enhanced nutritional values. Desirable donors having such multiple traits have been identified using core and mini core collections from the cultivated gene pool and wild relatives of Chickpea. Several methods have been developed to address cross-species fertilization obstacles and to aid in inter-specific hybridization and introgression of the target gene sequences from wild species. Additionally, recent advances in "Omics" sciences along with high-throughput and precise phenotyping tools have made it easier to identify genes that regulate traits of interest. Next-generation sequencing technologies, whole-genome sequencing, transcriptomics, and differential genes expression profiling along with a plethora of novel techniques like single nucleotide polymorphism exploiting high-density genotyping by sequencing assays, simple sequence repeat markers, diversity array technology platform, and whole-genome re-sequencing technique led to the identification and development of QTLs and high-density trait mapping of the global chickpea germplasm. These altogether have helped in broadening the narrow genetic base of chickpeas.

摘要

豆类作物作为蛋白质、ω-3脂肪酸以及特定常量和微量营养素的来源,为人类提供了重要的营养。此外,豆类通过补充土壤氮含量来改善种植环境。鹰嘴豆是全球第二重要的豆类主食作物,仅次于干豆,其含有17%-24%的蛋白质、41%-51%的碳水化合物以及其他重要的必需矿物质、维生素、膳食纤维、叶酸、β-胡萝卜素、抗氧化剂、微量营养素(磷、钙、镁、铁和锌)以及亚油酸和油酸等不饱和脂肪酸。尽管有这些优势,但在遗传改良方面,豆类远远落后于谷类作物,这主要是由于投入的努力较少、遗传基础狭窄的瓶颈以及在气候变化情况下的多种生物和非生物因素。现在需要采取超越传统育种实践的措施,利用鹰嘴豆野生近缘种从战略上拓宽狭窄的遗传基础,并通过先进的育种方法改良品种,重点关注高产、生物和非生物胁迫(包括气候适应能力)以及提高营养价值。利用鹰嘴豆栽培基因库和野生近缘种的核心和微型核心种质资源,已经鉴定出具有这些多种性状的理想供体。已经开发了几种方法来解决跨物种受精障碍,并有助于种间杂交和野生种目标基因序列的渐渗。此外,“组学”科学的最新进展以及高通量和精确的表型分析工具,使得识别调控感兴趣性状的基因变得更加容易。下一代测序技术、全基因组测序、转录组学以及差异基因表达谱分析,连同大量新技术,如利用测序分析进行单核苷酸多态性高密度基因分型、简单序列重复标记、多样性阵列技术平台和全基因组重测序技术,导致了鹰嘴豆全球种质资源的数量性状位点(QTL)鉴定与开发以及高密度性状图谱绘制。这些共同有助于拓宽鹰嘴豆狭窄的遗传基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/76cf/9416867/4e99cc676206/fgene-13-905771-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验