Center for Computational and Genomic Medicine, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, United States.
Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
Front Immunol. 2023 Jan 25;14:1116906. doi: 10.3389/fimmu.2023.1116906. eCollection 2023.
Major Histocompatibility Complex class I (MHC-I) molecules display self, viral or aberrant epitopic peptides to T cell receptors (TCRs), which employ interactions between complementarity-determining regions with both peptide and MHC-I heavy chain 'framework' residues to recognize specific Human Leucocyte Antigens (HLAs). The highly polymorphic nature of the HLA peptide-binding groove suggests a malleability of interactions within a common structural scaffold. Here, using structural data from peptide:MHC-I and pMHC:TCR structures, we first identify residues important for peptide and/or TCR binding. We then outline a fixed-backbone computational design approach for engineering synthetic molecules that combine peptide binding and TCR recognition surfaces from existing HLA allotypes. X-ray crystallography demonstrates that chimeric molecules bridging divergent HLA alleles can bind selected peptide antigens in a specified backbone conformation. Finally, tetramer staining and biophysical binding experiments using chimeric pMHC-I molecules presenting established antigens further demonstrate the requirement of TCR recognition on interactions with HLA framework residues, as opposed to interactions with peptide-centric Chimeric Antigen Receptors (CARs). Our results underscore a novel, structure-guided platform for developing synthetic HLA molecules with desired properties as screening probes for peptide-centric interactions with TCRs and other therapeutic modalities.
主要组织相容性复合体 I 类 (MHC-I) 分子将自身、病毒或异常表位肽展示给 T 细胞受体 (TCR),TCR 通过互补决定区与肽和 MHC-I 重链“框架”残基的相互作用来识别特定的人类白细胞抗原 (HLA)。HLA 肽结合槽的高度多态性表明在共同结构支架内相互作用具有可变性。在这里,我们使用来自肽:MHC-I 和 pMHC:TCR 结构的结构数据,首先确定对肽和/或 TCR 结合重要的残基。然后,我们概述了一种固定骨架的计算设计方法,用于设计合成分子,这些分子结合了来自现有 HLA 同种型的肽结合和 TCR 识别表面。X 射线晶体学表明,桥接不同 HLA 等位基因的嵌合分子可以在特定的骨架构象中结合选定的肽抗原。最后,使用呈现既定抗原的嵌合 pMHC-I 分子进行四聚体染色和生物物理结合实验进一步证明了 TCR 识别在与 HLA 框架残基相互作用中的必要性,而不是与以肽为中心的嵌合抗原受体 (CAR) 的相互作用。我们的研究结果强调了一种新的、基于结构的平台,用于开发具有所需特性的合成 HLA 分子,作为与 TCR 和其他治疗方式的肽为中心的相互作用的筛选探针。