Center for Computational and Genomic Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
College of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA.
Nat Commun. 2023 Oct 10;14(1):6349. doi: 10.1038/s41467-023-42163-z.
The class I proteins of the major histocompatibility complex (MHC-I) display epitopic peptides derived from endogenous proteins on the cell surface for immune surveillance. Accurate modeling of peptides bound to the human MHC, HLA, has been mired by conformational diversity of the central peptide residues, which are critical for recognition by T cell receptors. Here, analysis of X-ray crystal structures within our curated database (HLA3DB) shows that pHLA complexes encompassing multiple HLA allotypes present a discrete set of peptide backbone conformations. Leveraging these backbones, we employ a regression model trained on terms of a physically relevant energy function to develop a comparative modeling approach for nonamer pHLA structures named RepPred. Our method outperforms the top pHLA modeling approach by up to 19% in structural accuracy, and consistently predicts blind targets not included in our training set. Insights from our work may be applied towards predicting antigen immunogenicity, and receptor cross-reactivity.
主要组织相容性复合体 (MHC-I) 的 I 类蛋白在细胞表面展示源自内源性蛋白的表位肽,以进行免疫监视。准确模拟与人类 MHC(HLA)结合的肽受到中央肽残基构象多样性的阻碍,这些残基对于 T 细胞受体的识别至关重要。在这里,对我们 curated database (HLA3DB) 中的 X 射线晶体结构进行分析表明,包含多个 HLA 同种型的 pHLA 复合物呈现出离散的肽骨架构象集。利用这些骨架,我们利用基于物理相关能量函数的回归模型来开发一种名为 RepPred 的非九肽 pHLA 结构的比较建模方法。我们的方法在结构准确性方面的表现优于顶级 pHLA 建模方法,最高可达 19%,并且能够一致地预测不在我们训练集中的盲目标。我们工作的见解可应用于预测抗原免疫原性和受体交叉反应性。