Andreas Holger, Schiemer Georg
Department of Economic, Philosophy, and Political Science, University of British Columbia (Okanagan), Kelowna, Canada.
Department of Philosophy, University of Vienna, Vienna, Austria.
Erkenntnis. 2023;88(2):721-745. doi: 10.1007/s10670-021-00378-w. Epub 2021 May 8.
In this paper, we aim to explore connections between a Carnapian semantics of theoretical terms and an eliminative structuralist approach in the philosophy of mathematics. Specifically, we will interpret the language of Peano arithmetic by applying the modal semantics of theoretical terms introduced in Andreas (Synthese 174(3):367-383, 2010). We will thereby show that the application to Peano arithmetic yields a formal semantics of universal structuralism, i.e., the view that ordinary mathematical statements in arithmetic express general claims about all admissible interpretations of the Peano axioms. Moreover, we compare this application with the modal structuralism by Hellman (Mathematics without numbers: towards a modal-structural interpretation. Oxford University Press: Oxford, 1989), arguing that it provides us with an easier epistemology of statements in arithmetic.
在本文中,我们旨在探究数学哲学中理论术语的卡尔纳普语义学与消除结构主义方法之间的联系。具体而言,我们将通过应用安德烈亚斯(Andreas)在《综合》(Synthese 174(3):367 - 383, 2010)中引入的理论术语模态语义学来解释皮亚诺算术语言。由此我们将表明,对皮亚诺算术的应用产生了一种通用结构主义的形式语义学,即认为算术中的普通数学陈述表达了关于皮亚诺公理所有可允许解释的一般断言。此外,我们将这种应用与赫尔曼(Hellman)的模态结构主义(《没有数的数学:迈向模态 - 结构解释》。牛津大学出版社:牛津,1989)进行比较,认为它为我们提供了一种更简便的算术陈述认识论。