Cortese J D, Fleischer S
Department of Molecular Biology, Vanderbilt University, Nashville, Tennessee 37235.
Biochemistry. 1987 Aug 25;26(17):5283-93. doi: 10.1021/bi00391a011.
D-beta-Hydroxybutyrate dehydrogenase (BDH) is a lecithin-requiring mitochondrial enzyme that catalyzes the interconversion of beta-hydroxybutyrate and acetoacetate. The purified soluble enzyme devoid of lipid (i.e., the apodehydrogenase) can be reactivated with soluble lecithin or by insertion into phospholipid vesicles containing lecithin. Lipid activation curves have a sigmoidal shape, and two models have been proposed to explain them. We have previously reported that the kinetics of reactivation with short-chain lecithins in the soluble state is consistent with a model in which the enzyme enzyme contains two identical, noninteracting lecithin binding sites, both of which must be occupied to activate the enzyme [noncooperative mechanism; Cortese, J.D., Vidal, J.C., Churchill, P., McIntyre, J.O., & Fleischer, S. (1982) Biochemistry 21, 3899-3908]. More recently a kinetic model involving cooperative interactions between lecithin binding sites was proposed for the reactivation of the membrane-bound enzyme [Sandermann, H., Jr., McIntyre, J.O., & Fleischer, S. (1986) J. Biol. Chem. 261, 6201-6208]. This study reinvestigates the basis for the different conclusions in these two studies. The previous study with soluble lecithins was limited to about 34% of maximal activation compared with mitochondrial phospholipid, due to inactivation of the enzyme at the critical micellar concentration. We could now extend this study to 91% activation by increasing the ethanol concentration. This experimental evidence confirms that the soluble system follows a noncooperative equation. We provide a new kinetic approach to test the cooperative model. A velocity equation is derived for a Hill-type cooperative ligand binding system interacting with a mixture of ligands. This equation predicts a proportionality between an overall weighted cooperative dissociation constant [Kcoop(w)] and a dissociation constant for a single lecithin (PC) species from interacting sites (KPC), regulated by the PC molar fraction (XPC): 1/Kcoop(w) = XPC/KPC. The equation was applied to the data of Sandermann et al. [Sandermann, H., Jr., McIntyre, J.O., & Fleischer, S. (1986) J. Biol. Chem. 261, 6201-6208] as well as to newly obtained data. The results obtained over a wide range of PC molar fractions and different mixtures of bilayer phospholipids fit this equation, confirming the cooperative behavior. We conclude that BDH has a different mode of reactivation depending on the nature of the lipid environment. With soluble lecithin, the activation is noncooperative, whereas in the bilayer, mixtures of phospholipids give cooperative behavior that fits a Hill equation.(ABSTRACT TRUNCATED AT 400 WORDS)
D-β-羟基丁酸脱氢酶(BDH)是一种需要卵磷脂的线粒体酶,可催化β-羟基丁酸和乙酰乙酸之间的相互转化。纯化后的无脂质可溶性酶(即脱辅基脱氢酶)可通过可溶性卵磷脂或插入含有卵磷脂的磷脂囊泡来重新激活。脂质激活曲线呈S形,并且已经提出了两种模型来解释它们。我们之前曾报道,可溶性状态下短链卵磷脂的重新激活动力学与一种模型一致,在该模型中,酶含有两个相同的、不相互作用的卵磷脂结合位点,两个位点都必须被占据才能激活酶[非协同机制;科尔特斯,J.D.,维达尔,J.C.,丘吉尔,P.,麦金太尔,J.O.,&弗莱舍,S.(1982年)《生物化学》21卷,3899 - 3908页]。最近,有人提出了一种涉及卵磷脂结合位点之间协同相互作用的动力学模型,用于膜结合酶的重新激活[桑德曼,H.,小,麦金太尔,J.O.,&弗莱舍,S.(1986年)《生物化学杂志》261卷,6201 - 6208页]。本研究重新调查了这两项研究得出不同结论的依据。之前关于可溶性卵磷脂的研究与线粒体磷脂相比,由于酶在临界胶束浓度下失活,最大激活率仅约为34%。现在我们可以通过提高乙醇浓度将这项研究扩展至91%的激活率。这一实验证据证实可溶性系统遵循非协同方程。我们提供了一种新的动力学方法来测试协同模型。推导了一个速度方程,用于描述与配体混合物相互作用的希尔型协同配体结合系统。该方程预测,由卵磷脂摩尔分数(XPC)调节的总体加权协同解离常数[Kcoop(w)]与单个卵磷脂(PC)物种从相互作用位点的解离常数(KPC)之间存在比例关系:1/Kcoop(w)=XPC/KPC。该方程被应用于桑德曼等人的数据[桑德曼,H.,小,麦金太尔,J.O.,&弗莱舍,S.(1986年)《生物化学杂志》261卷,6201 - 6208页]以及新获得的数据。在广泛的PC摩尔分数范围和不同双层磷脂混合物中获得的结果符合该方程,证实了协同行为。我们得出结论,BDH的重新激活模式因脂质环境的性质而异。对于可溶性卵磷脂,激活是非协同的,而在双层中,磷脂混合物呈现出符合希尔方程的协同行为。(摘要截短至400字)