Kratky Julia, Eggerichs Daniel, Heine Thomas, Hofmann Sarah, Sowa Philipp, Weiße Renato H, Tischler Dirk, Sträter Norbert
Institute of Bioanalytical Chemistry, Leipzig University, Deutscher Platz 5, 04103, Leipzig, Germany.
Microbial Biotechnology, Ruhr-Universität Bochum, Universitätsstr. 150, 44780, Bochum, Germany.
Angew Chem Int Ed Engl. 2023 Apr 17;62(17):e202300657. doi: 10.1002/anie.202300657. Epub 2023 Mar 16.
Flavoprotein monooxygenases are a versatile group of enzymes for biocatalytic transformations. Among these, group E monooxygenases (GEMs) catalyze enantioselective epoxidation and sulfoxidation reactions. Here, we describe the crystal structure of an indole monooxygenase from the bacterium Variovorax paradoxus EPS, a GEM designated as VpIndA1. Complex structures with substrates reveal productive binding modes that, in conjunction with force-field calculations and rapid mixing kinetics, reveal the structural basis of substrate and stereoselectivity. Structure-based redesign of the substrate cavity yielded variants with new substrate selectivity (for sulfoxidation of benzyl phenyl sulfide) or with greatly enhanced stereoselectivity (from 35.1 % to 99.8 % ee for production of (1S,2R)-indene oxide). This first determination of the substrate binding mode of GEMs combined with structure-function relationships opens the door for structure-based design of these powerful biocatalysts.
黄素蛋白单加氧酶是用于生物催化转化的一类多功能酶。其中,E组单加氧酶(GEMs)催化对映选择性环氧化和硫氧化反应。在此,我们描述了来自食酸代尔夫特菌EPS的一种吲哚单加氧酶的晶体结构,该酶是一种名为VpIndA1的GEM。与底物的复合物结构揭示了有效的结合模式,结合力场计算和快速混合动力学,揭示了底物和立体选择性的结构基础。基于结构对底物腔进行重新设计,得到了具有新底物选择性(用于苄基苯基硫醚的硫氧化)或立体选择性大大提高(生成(1S,2R)-茚氧化物的对映体过量从35.1%提高到99.8%)的变体。首次确定GEMs的底物结合模式并结合结构-功能关系,为这些强大的生物催化剂的基于结构的设计打开了大门。