Department of Mechanical Engineering, Aalto University, 02150, Espoo, Finland.
Wärtsilä Finland Oy, 6510, Vaasa, Finland.
Sci Rep. 2023 Feb 10;13(1):2445. doi: 10.1038/s41598-023-29673-y.
The detection of chemiluminescence from various radicals and molecules in a hydrocarbon flame can provide valuable information on the rate of local heat release, combustion stability, and combustion completeness. In this study, chemiluminescence from the combustion process is detected using a high-speed color camera within the broadband spectrum of visible light. Whereon, a novel hyperspectral reconstruction approach based on the physically plausible spectral reconstruction (PPSR) is employed to reconstruct the spectral chemiluminescence signals from 400 to 700 nm with a resolution of 10 nm to provide 31 different spectral channels. The reconstructed key chemiluminescence signals (e.g., CH*, CHO*, C*, and CO*) from the color images are further analyzed to characterize the chemical kinetics and combustion processes under engine conditions. The spectral chemiluminescence evolution with engine crank angle is identified to comprehend the effect of H fraction on flame characteristics and combustion kinetics. Additionally, in this study, a detailed kinetic mechanism is adopted to deepen the theoretical understanding and describe the spectral chemiluminescence from H/CH and H/CH/n-dodecane flames at relevant conditions for various species including OH*, CH*, C*, and CO*. The results indicate that the PPSR is an adequately reliable approach to reconstructing spectral wavelengths based on chemiluminescence signals from the color images, which can potentially provide qualitative information about the evolution of various species during combustion. Here, the reconstructed chemiluminescence images show less than 1% errors compared to the raw images in red, green, and blue channels. Furthermore, the reconstructed chemiluminescence trends of CH*, CHO*, C*, and CO* show a good agreement with the detailed kinetics 0D simulation.
各种自由基和分子在碳氢火焰中产生的化学发光的检测可以提供有关局部热释放率、燃烧稳定性和燃烧完全性的有价值的信息。在这项研究中,使用高速彩色摄像机在可见光谱的宽带范围内检测燃烧过程中的化学发光。在此基础上,采用基于物理合理光谱重建(PPSR)的新型高光谱重建方法,以 10nm 的分辨率从 400nm 到 700nm 重建光谱化学发光信号,提供 31 个不同的光谱通道。从彩色图像中进一步分析重建的关键化学发光信号(例如 CH*、CHO*、C和 CO),以表征发动机条件下的化学动力学和燃烧过程。确定了随发动机曲轴转角的光谱化学发光演化,以了解 H 分数对火焰特性和燃烧动力学的影响。此外,在这项研究中,采用详细的动力学机制来加深理论理解,并描述在相关条件下 H/CH 和 H/CH/n-十二烷火焰的光谱化学发光,涉及包括 OH*、CH*、C和 CO在内的各种物质。结果表明,PPSR 是一种根据颜色图像中的化学发光信号重建光谱波长的可靠方法,它可能提供有关燃烧过程中各种物质演化的定性信息。这里,重建的化学发光图像在红色、绿色和蓝色通道中与原始图像相比误差小于 1%。此外,CH*、CHO*、C和 CO的重建化学发光趋势与详细的零维模拟具有良好的一致性。