Suppr超能文献

开源策管胰腺导管腺癌基因表达分析平台(pdacR)支持两亚型模型。

Open-source curation of a pancreatic ductal adenocarcinoma gene expression analysis platform (pdacR) supports a two-subtype model.

机构信息

Department of Biomedical Informatics, Stony Brook Medicine, Stony Brook, NY, USA.

Department of Pathology, Stony Brook Medicine, Stony Brook, NY, USA.

出版信息

Commun Biol. 2023 Feb 10;6(1):163. doi: 10.1038/s42003-023-04461-6.

Abstract

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease for which potent therapies have limited efficacy. Several studies have described the transcriptomic landscape of PDAC tumors to provide insight into potentially actionable gene expression signatures to improve patient outcomes. Despite centralization efforts from multiple organizations and increased transparency requirements from funding agencies and publishers, analysis of public PDAC data remains difficult. Bioinformatic pitfalls litter public transcriptomic data, such as subtle inclusion of low-purity and non-adenocarcinoma cases. These pitfalls can introduce non-specificity to gene signatures without appropriate data curation, which can negatively impact findings. To reduce barriers to analysis, we have created pdacR ( http://pdacR.bmi.stonybrook.edu , github.com/rmoffitt/pdacR), an open-source software package and web-tool with annotated datasets from landmark studies and an interface for user-friendly analysis in clustering, differential expression, survival, and dimensionality reduction. Using this tool, we present a multi-dataset analysis of PDAC transcriptomics that confirms the basal-like/classical model over alternatives.

摘要

胰腺导管腺癌(PDAC)是一种侵袭性疾病,目前有效的治疗方法还很有限。有几项研究描述了 PDAC 肿瘤的转录组图谱,以期深入了解潜在的可操作基因表达特征,改善患者的预后。尽管多个组织都在努力集中资源,资助机构和出版商也提高了透明度要求,但分析公共 PDAC 数据仍然很困难。生物信息学陷阱充斥着公共转录组数据,例如低纯度和非胰腺导管腺癌病例的微妙包含。如果没有适当的数据管理,这些陷阱会给基因特征带来非特异性,从而对研究结果产生负面影响。为了减少分析的障碍,我们创建了 pdacR(http://pdacR.bmi.stonybrook.edu,github.com/rmoffitt/pdacR),这是一个开源软件包和网络工具,其中包含来自重要研究的带注释数据集,以及用于聚类、差异表达、生存和降维等方面的用户友好型分析的接口。使用这个工具,我们对 PDAC 转录组学进行了多数据集分析,证实了基础样/经典模型优于其他替代模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c3a3/9918476/5eed8bfb0a6f/42003_2023_4461_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验