Suppr超能文献

肿瘤教育血小板用于乳腺癌检测:生物学和技术见解。

Tumour-educated platelets for breast cancer detection: biological and technical insights.

机构信息

Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.

Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands.

出版信息

Br J Cancer. 2023 Apr;128(8):1572-1581. doi: 10.1038/s41416-023-02174-5. Epub 2023 Feb 10.

Abstract

BACKGROUND

Studies have shown that blood platelets contain tumour-specific mRNA profiles tumour-educated platelets (TEPs). Here, we aim to train a TEP-based breast cancer detection classifier.

METHODS

Platelet mRNA was sequenced from 266 women with stage I-IV breast cancer and 212 female controls from 6 hospitals. A particle swarm optimised support vector machine (PSO-SVM) and an elastic net-based classifier (EN) were trained on 71% of the study population. Classifier performance was evaluated in the remainder (29%) of the population, followed by validation in an independent set (37 cases and 36 controls). Potential confounding was assessed in post hoc analyses.

RESULTS

Both classifiers reached an area under the curve (AUC) of 0.85 upon internal validation. Reproducibility in the independent validation set was poor with an AUC of 0.55 and 0.54 for the PSO-SVM and EN classifier, respectively. Post hoc analyses indicated that 19% of the variance in gene expression was associated with hospital. Genes related to platelet activity were differentially expressed between hospitals.

CONCLUSIONS

We could not validate two TEP-based breast cancer classifiers in an independent validation cohort. The TEP protocol is sensitive to within-protocol variation and revision might be necessary before TEPs can be reconsidered for breast cancer detection.

摘要

背景

研究表明,血小板中含有肿瘤特异性 mRNA 谱,即肿瘤教育血小板(TEP)。在这里,我们旨在训练基于 TEP 的乳腺癌检测分类器。

方法

从 6 家医院的 266 名 I-IV 期乳腺癌女性和 212 名女性对照中对血小板 mRNA 进行测序。将 71%的研究人群的粒子群优化支持向量机(PSO-SVM)和基于弹性网络的分类器(EN)进行训练。在人群的其余 29%中评估分类器的性能,然后在独立集(37 例和 36 例对照)中进行验证。在事后分析中评估了潜在的混杂因素。

结果

两种分类器在内部验证中均达到 0.85 的曲线下面积(AUC)。在独立验证集中的重现性较差,PSO-SVM 和 EN 分类器的 AUC 分别为 0.55 和 0.54。事后分析表明,基因表达的 19%变异与医院有关。与血小板活性相关的基因在医院之间表达不同。

结论

我们无法在独立验证队列中验证两种基于 TEP 的乳腺癌分类器。TEP 方案对方案内的变化很敏感,在重新考虑 TEP 用于乳腺癌检测之前,可能需要进行修订。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a77/10070267/fbda8c8bb84d/41416_2023_2174_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验