Suppr超能文献

基于炎症和营养生物标志物的列线图预测乳腺癌患者的生存情况。

A nomogram based on inflammation and nutritional biomarkers for predicting the survival of breast cancer patients.

机构信息

Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, Nanning, China.

Department of Injection Room, The People's Hospital of Yingtan, Yingtan, Jiangxi, China.

出版信息

Front Endocrinol (Lausanne). 2024 Aug 7;15:1388861. doi: 10.3389/fendo.2024.1388861. eCollection 2024.

Abstract

BACKGROUND

We aim to develop a new prognostic model that incorporates inflammation, nutritional parameters and clinical-pathological features to predict overall survival (OS) and disease free survival (DFS) of breast cancer (BC) patients.

METHODS

The study included clinicopathological and follow-up data from a total of 2857 BC patients between 2013 and 2021. Data were randomly divided into two cohorts: training (n=2001) and validation (n=856) cohorts. A nomogram was established based on the results of a multivariate Cox regression analysis from the training cohorts. The predictive accuracy and discriminative ability of the nomogram were evaluated by the concordance index (C-index) and calibration curve. Furthermore, decision curve analysis (DCA) was performed to assess the clinical value of the nomogram.

RESULTS

A nomogram was developed for BC, incorporating lymphocyte, platelet count, hemoglobin levels, albumin-to-globulin ratio, prealbumin level and other key variables: subtype and TNM staging. In the prediction of OS and DFS, the concordance index (C-index) of the nomogram is statistically greater than the C-index values obtained using TNM staging alone. Moreover, the time-dependent AUC, exceeding the threshold of 0.7, demonstrated the nomogram's satisfactory discriminative performance over different periods. DCA revealed that the nomogram offered a greater overall net benefit than the TNM staging system.

CONCLUSION

The nomogram incorporating inflammation, nutritional and clinicopathological variables exhibited excellent discrimination. This nomogram is a promising instrument for predicting outcomes and defining personalized treatment strategies for patients with BC.

摘要

背景

我们旨在开发一种新的预后模型,该模型结合炎症、营养参数和临床病理特征,以预测乳腺癌(BC)患者的总生存(OS)和无病生存(DFS)。

方法

该研究纳入了 2013 年至 2021 年间共 2857 例 BC 患者的临床病理和随访数据。数据被随机分为两个队列:训练(n=2001)和验证(n=856)队列。基于训练队列的多变量 Cox 回归分析结果,建立了一个列线图。通过一致性指数(C 指数)和校准曲线评估列线图的预测准确性和判别能力。此外,还进行了决策曲线分析(DCA),以评估列线图的临床价值。

结果

我们为 BC 开发了一个列线图,该列线图纳入了淋巴细胞、血小板计数、血红蛋白水平、白蛋白/球蛋白比值、前白蛋白水平和其他关键变量:亚型和 TNM 分期。在 OS 和 DFS 的预测中,列线图的一致性指数(C 指数)显著大于单独使用 TNM 分期获得的 C 指数值。此外,时间依赖性 AUC 值超过 0.7 的阈值,表明列线图在不同时间段具有令人满意的判别性能。DCA 显示,该列线图比 TNM 分期系统提供了更大的总体净效益。

结论

该列线图纳入了炎症、营养和临床病理变量,具有出色的判别能力。该列线图是预测 BC 患者结局和制定个性化治疗策略的一种很有前途的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/abe1/11335604/6db2de14d4f2/fendo-15-1388861-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验