Suppr超能文献

通过氨丙基硅氮烷点击化学制备的二氧化硅纳米结构上的聚合物刷:卓越的抗污性能和生物功能

Polymer Brushes on Silica Nanostructures Prepared by Aminopropylsilatrane Click Chemistry: Superior Antifouling and Biofunctionality.

作者信息

Andersson John, Järlebark Julia, Kk Sriram, Schaefer Andreas, Hailes Rebekah, Palasingh Chonnipa, Santoso Bagus, Vu Van-Truc, Huang Chun-Jun, Westerlund Fredrik, Dahlin Andreas

机构信息

Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden.

Department of Life Sciences, Chalmers University of Technology, 41296 Gothenburg, Sweden.

出版信息

ACS Appl Mater Interfaces. 2023 Feb 10;15(7):10228-39. doi: 10.1021/acsami.2c21168.

Abstract

In nanobiotechnology, the importance of controlling interactions between biological molecules and surfaces is paramount. In recent years, many devices based on nanostructured silicon materials have been presented, such as nanopores and nanochannels. However, there is still a clear lack of simple, reliable, and efficient protocols for preventing and controlling biomolecule adsorption in such structures. In this work, we show a simple method for passivation or selective biofunctionalization of silica, without the need for polymerization reactions or vapor-phase deposition. The surface is simply exposed stepwise to three different chemicals over the course of ∼1 h. First, the use of aminopropylsilatrane is used to create a monolayer of amines, yielding more uniform layers than conventional silanization protocols. Second, a cross-linker layer and click chemistry are used to make the surface reactive toward thiols. In the third step, thick and dense poly(ethylene glycol) brushes are prepared by a grafting-to approach. The modified surfaces are shown to be superior to existing options for silica modification, exhibiting ultralow fouling (a few ng/cm) after exposure to crude serum. In addition, by including a fraction of biotinylated polymer end groups, the surface can be functionalized further. We show that avidin can be detected label-free from a serum solution with a selectivity (compared to nonspecific binding) of more than 98% without the need for a reference channel. Furthermore, we show that our method can passivate the interior of 150 nm × 100 nm nanochannels in silica, showing complete elimination of adsorption of a sticky fluorescent protein. Additionally, our method is shown to be compatible with modifications of solid-state nanopores in 20 nm thin silicon nitride membranes and reduces the noise in the ion current. We consider these findings highly important for the broad field of nanobiotechnology, and we believe that our method will be very useful for a great variety of surface-based sensors and analytical devices.

摘要

在纳米生物技术中,控制生物分子与表面之间的相互作用至关重要。近年来,已经出现了许多基于纳米结构硅材料的器件,如纳米孔和纳米通道。然而,在这类结构中,仍然明显缺乏简单、可靠且高效的防止和控制生物分子吸附的方法。在这项工作中,我们展示了一种用于二氧化硅钝化或选择性生物功能化的简单方法,无需聚合反应或气相沉积。只需在约1小时的过程中将表面逐步暴露于三种不同的化学物质。首先,使用氨丙基硅氮烷形成胺单层,与传统硅烷化方法相比,可产生更均匀的层。其次,使用交联剂层和点击化学使表面对硫醇具有反应性。在第三步中,通过接枝法制备厚且致密的聚乙二醇刷。结果表明修饰后的表面优于现有的二氧化硅修饰方法,在暴露于粗血清后表现出超低污垢(几纳克/平方厘米)。此外,通过包含一部分生物素化的聚合物端基,表面可以进一步功能化。我们表明,无需参考通道,就可以从血清溶液中无标记地检测抗生物素蛋白,其选择性(与非特异性结合相比)超过98%。此外,我们表明我们的方法可以钝化二氧化硅中150 nm×100 nm纳米通道的内部,完全消除粘性荧光蛋白的吸附。另外,我们的方法被证明与20 nm薄氮化硅膜中的固态纳米孔修饰兼容,并降低了离子电流中的噪声。我们认为这些发现对纳米生物技术的广泛领域非常重要,并且我们相信我们的方法将对各种各样的基于表面的传感器和分析设备非常有用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0ef/9951205/a1e631841aa1/am2c21168_0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验