Eyraud Rémi, Ayache Stéphane, Tsvetkov Philipp O, Kalidindi Shanmugha Sri, Baksheeva Viktoriia E, Boissonneau Sébastien, Jiguet-Jiglaire Carine, Appay Romain, Nanni-Metellus Isabelle, Chinot Olivier, Devred François, Tabouret Emeline
Laboratoire Hubert Curien UMR 5516, UJM-Saint-Etienne, University Lyon, CNRS, 42000 Saint Etienne, France.
LIS, Aix Marseille Univ, CNRS, 13288 Marseille, France.
Cancers (Basel). 2023 Jan 26;15(3):760. doi: 10.3390/cancers15030760.
Glioblastoma (GBM) is the most frequent and aggressive primary brain tumor in adults. Recently, we demonstrated that plasma denaturation profiles of glioblastoma patients obtained using Differential Scanning Fluorimetry can be automatically distinguished from healthy controls with the help of Artificial Intelligence (AI). Here, we used a set of machine-learning algorithms to automatically classify plasma denaturation profiles of glioblastoma patients according to their EGFR status. We found that Adaboost AI is able to discriminate alterations in GBM with an 81.5% accuracy. Our study shows that the use of these plasma denaturation profiles could answer the unmet neuro-oncology need for diagnostic predictive biomarker in combination with brain MRI and clinical data, in order to allow for a rapid orientation of patients for a definitive pathological diagnosis and then treatment. We complete this study by showing that discriminating another mutation, MGMT, seems harder, and that post-surgery monitoring using our approach is not conclusive in the 48 h that follow the surgery.
胶质母细胞瘤(GBM)是成人中最常见且侵袭性最强的原发性脑肿瘤。最近,我们证明了使用差示扫描荧光法获得的胶质母细胞瘤患者的血浆变性谱,借助人工智能(AI)能够自动与健康对照区分开来。在此,我们使用一组机器学习算法,根据表皮生长因子受体(EGFR)状态对胶质母细胞瘤患者的血浆变性谱进行自动分类。我们发现,Adaboost人工智能能够以81.5%的准确率区分GBM中的改变。我们的研究表明,结合脑部磁共振成像(MRI)和临床数据,使用这些血浆变性谱能够满足神经肿瘤学中对诊断预测生物标志物的未满足需求,以便为患者进行快速定位,从而进行明确的病理诊断并随后进行治疗。我们通过表明区分另一种突变,即甲基鸟嘌呤甲基转移酶(MGMT)似乎更困难,以及使用我们的方法在术后48小时内进行手术监测尚无定论,来完成这项研究。