Suppr超能文献

机器学习和放射基因组学在精准神经肿瘤学中的当前作用。

Current role of machine learning and radiogenomics in precision neuro-oncology.

作者信息

Perillo Teresa, de Giorgi Marco, Papace Umberto Maria, Serino Antonietta, Cuocolo Renato, Manto Andrea

机构信息

Department of Neuroradiology, "Umberto I" Hospital, 84014 Norcera Inferiore, Italy.

Department of Advanced Biomedical Sciences, University of Naples "Federico II", 80138 Naples, Italy.

出版信息

Explor Target Antitumor Ther. 2023;4(4):545-555. doi: 10.37349/etat.2023.00151. Epub 2023 Jul 19.

Abstract

In the past few years, artificial intelligence (AI) has been increasingly used to create tools that can enhance workflow in medicine. In particular, neuro-oncology has benefited from the use of AI and especially machine learning (ML) and radiogenomics, which are subfields of AI. ML can be used to develop algorithms that dynamically learn from available medical data in order to automatically do specific tasks. On the other hand, radiogenomics can identify relationships between tumor genetics and imaging features, thus possibly giving new insights into the pathophysiology of tumors. Therefore, ML and radiogenomics could help treatment tailoring, which is crucial in personalized neuro-oncology. The aim of this review is to illustrate current and possible future applications of ML and radiomics in neuro-oncology.

摘要

在过去几年中,人工智能(AI)越来越多地被用于创建能够优化医学工作流程的工具。特别是神经肿瘤学受益于AI的应用,尤其是机器学习(ML)和放射基因组学,它们是AI的子领域。ML可用于开发算法,这些算法能从可用的医学数据中动态学习,以便自动执行特定任务。另一方面,放射基因组学可以识别肿瘤遗传学与影像学特征之间的关系,从而可能为肿瘤的病理生理学提供新的见解。因此,ML和放射基因组学有助于进行治疗定制,这在个性化神经肿瘤学中至关重要。本综述的目的是阐述ML和放射组学在神经肿瘤学中的当前及可能的未来应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d80f/10501892/3a3fa839dd85/etat-04-1002151-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验