Suppr超能文献

使用具有迁移学习机制的集成高效神经网络B2 U型网络对全切片图像进行区域分割,以分析前列腺腺癌的组织学分化

Region Segmentation of Whole-Slide Images for Analyzing Histological Differentiation of Prostate Adenocarcinoma Using Ensemble EfficientNetB2 U-Net with Transfer Learning Mechanism.

作者信息

Ikromjanov Kobiljon, Bhattacharjee Subrata, Sumon Rashadul Islam, Hwang Yeong-Byn, Rahman Hafizur, Lee Myung-Jae, Kim Hee-Cheol, Park Eunhyang, Cho Nam-Hoon, Choi Heung-Kook

机构信息

Department of Digital Anti-Aging Healthcare, u-AHRC, Inje University, Gimhae 50834, Republic of Korea.

Department of Computer Engineering, u-AHRC, Inje University, Gimhae 50834, Republic of Korea.

出版信息

Cancers (Basel). 2023 Jan 26;15(3):762. doi: 10.3390/cancers15030762.

Abstract

Recent advances in computer-aided detection via deep learning (DL) now allow for prostate cancer to be detected automatically and recognized with extremely high accuracy, much like other medical diagnoses and prognoses. However, researchers are still limited by the Gleason scoring system. The histopathological analysis involved in assigning the appropriate score is a rigorous, time-consuming manual process that is constrained by the quality of the material and the pathologist's level of expertise. In this research, we implemented a DL model using transfer learning on a set of histopathological images to segment cancerous and noncancerous areas in whole-slide images (WSIs). In this approach, the proposed Ensemble U-net model was applied for the segmentation of stroma, cancerous, and benign areas. The WSI dataset of prostate cancer was collected from the Kaggle repository, which is publicly available online. A total of 1000 WSIs were used for region segmentation. From this, 8100 patch images were used for training, and 900 for testing. The proposed model demonstrated an average dice coefficient (DC), intersection over union (IoU), and Hausdorff distance of 0.891, 0.811, and 15.9, respectively, on the test set, with corresponding masks of patch images. The manipulation of the proposed segmentation model improves the ability of the pathologist to predict disease outcomes, thus enhancing treatment efficacy by isolating the cancerous regions in WSIs.

摘要

近年来,通过深度学习(DL)实现的计算机辅助检测技术取得了进展,现在可以自动检测前列腺癌并以极高的准确率进行识别,这与其他医学诊断和预后情况非常相似。然而,研究人员仍受限于 Gleason 评分系统。确定适当分数所涉及的组织病理学分析是一个严格、耗时的手动过程,受到材料质量和病理学家专业水平的限制。在本研究中,我们在一组组织病理学图像上使用迁移学习实现了一个深度学习模型,以分割全切片图像(WSIs)中的癌性和非癌性区域。在这种方法中,所提出的集成 U-net 模型被应用于基质、癌性和良性区域的分割。前列腺癌的全切片图像数据集是从 Kaggle 存储库收集的,该存储库可在网上公开获取。总共 1000 张全切片图像用于区域分割。从中,8100 张补丁图像用于训练,900 张用于测试。所提出的模型在测试集上针对补丁图像的相应掩码,平均骰子系数(DC)、交并比(IoU)和豪斯多夫距离分别为 0.891、0.811 和 15.9。所提出的分割模型的操作提高了病理学家预测疾病结果的能力,从而通过在全切片图像中分离癌性区域来提高治疗效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f69d/9913745/eee2402d5c72/cancers-15-00762-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验