School of Computing, Queen's University, Kingston, Canada.
Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, Canada.
Int J Comput Assist Radiol Surg. 2024 May;19(5):841-849. doi: 10.1007/s11548-024-03119-w. Epub 2024 May 5.
Deep learning-based analysis of micro-ultrasound images to detect cancerous lesions is a promising tool for improving prostate cancer (PCa) diagnosis. An ideal model should confidently identify cancer while responding with appropriate uncertainty when presented with out-of-distribution inputs that arise during deployment due to imaging artifacts and the biological heterogeneity of patients and prostatic tissue.
Using micro-ultrasound data from 693 patients across 5 clinical centers who underwent micro-ultrasound guided prostate biopsy, we train and evaluate convolutional neural network models for PCa detection. To improve robustness to out-of-distribution inputs, we employ and comprehensively benchmark several state-of-the-art uncertainty estimation methods.
PCa detection models achieve performance scores up to average AUROC with a 10-fold cross validation setup. Models with uncertainty estimation obtain expected calibration error scores as low as , indicating that confident predictions are very likely to be correct. Visualizations of the model output demonstrate that the model correctly identifies healthy versus malignant tissue.
Deep learning models have been developed to confidently detect PCa lesions from micro-ultrasound. The performance of these models, determined from a large and diverse dataset, is competitive with visual analysis of magnetic resonance imaging, the clinical benchmark to identify PCa lesions for targeted biopsy. Deep learning with micro-ultrasound should be further studied as an avenue for targeted prostate biopsy.
基于深度学习的微超声图像分析可用于检测癌症病变,是提高前列腺癌(PCa)诊断水平的有前途的工具。理想的模型应该能够自信地识别癌症,同时在面对由于成像伪影以及患者和前列腺组织的生物学异质性而在部署过程中出现的分布外输入时,以适当的不确定性做出响应。
我们使用来自 5 个临床中心的 693 名接受微超声引导前列腺活检的患者的微超声数据,训练和评估用于 PCa 检测的卷积神经网络模型。为了提高对分布外输入的鲁棒性,我们采用并全面基准测试了几种最先进的不确定性估计方法。
PCa 检测模型在 10 倍交叉验证设置下的性能得分高达平均 AUC。具有不确定性估计的模型获得的预期校准误差分数低至 ,表明置信度高的预测很可能是正确的。模型输出的可视化表明,该模型能够正确识别健康组织和恶性组织。
已经开发出深度学习模型来从微超声中自信地检测 PCa 病变。这些模型的性能是从大型且多样化的数据集确定的,与磁共振成像的视觉分析具有竞争力,磁共振成像一直是用于识别 PCa 病变以进行靶向活检的临床基准。应进一步研究基于微超声的深度学习,作为靶向前列腺活检的一种途径。