Suppr超能文献

基于迁移深度学习的沙棘果实水分含量范围视觉检测

Visual Detection of Water Content Range of Seabuckthorn Fruit Based on Transfer Deep Learning.

作者信息

Xu Yu, Kou Jinmei, Zhang Qian, Tan Shudan, Zhu Lichun, Geng Zhihua, Yang Xuhai

机构信息

College of Mechanical and Electrical Engineering, Shihezi University, Shihezi 832000, China.

Engineering Research Center for Production Mechanization of Oasis Characteristic Cash Crop, Ministry of Education, Shihezi 832000, China.

出版信息

Foods. 2023 Jan 26;12(3):550. doi: 10.3390/foods12030550.

Abstract

To realize the classification of sea buckthorn fruits with different water content ranges, a convolution neural network (CNN) detection model of sea buckthorn fruit water content ranges was constructed. In total, 900 images of seabuckthorn fruits with different water contents were collected from 720 seabuckthorn fruits. Eight classic network models based on deep learning were used as feature extraction for transfer learning. A total of 180 images were randomly selected from the images of various water content ranges for testing. Finally, the identification accuracy of the network model for the water content range of seabuckthorn fruit was 98.69%, and the accuracy on the test set was 99.4%. The program in this study can quickly identify the moisture content range of seabuckthorn fruit by collecting images of the appearance and morphology changes during the drying process of seabuckthorn fruit. The model has a good detection effect for seabuckthorn fruits with different moisture content ranges with slight changes in characteristics. The migration deep learning can also be used to detect the moisture content range of other agricultural products, providing technical support for the rapid nondestructive testing of moisture contents of agricultural products.

摘要

为实现对不同含水量范围沙棘果实的分类,构建了沙棘果实含水量范围的卷积神经网络(CNN)检测模型。从720个沙棘果实中总共采集了900张不同含水量的沙棘果实图像。使用8种基于深度学习的经典网络模型进行迁移学习的特征提取。从各种含水量范围的图像中随机选取180张进行测试。最终,网络模型对沙棘果实含水量范围的识别准确率为98.69%,在测试集上的准确率为99.4%。本研究中的程序通过采集沙棘果实干燥过程中外观和形态变化的图像,能够快速识别沙棘果实的含水量范围。该模型对不同含水量范围且特征变化微小的沙棘果实具有良好的检测效果。迁移深度学习还可用于检测其他农产品的含水量范围,为农产品含水量的快速无损检测提供技术支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a3c/9914117/3dd1f8959ccb/foods-12-00550-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验