Suppr超能文献

COVID-19 封锁区患者转移和救援物资分配的两阶段多目标随机模型

Two-Stage Multi-Objective Stochastic Model on Patient Transfer and Relief Distribution in Lockdown Area of COVID-19.

机构信息

School of Traffic and Transportation Engineering, Central South University, Changsha 410075, China.

College of Logistics and Transportation, Central South University of Forestry and Technology, Changsha 410004, China.

出版信息

Int J Environ Res Public Health. 2023 Jan 18;20(3):1765. doi: 10.3390/ijerph20031765.

Abstract

The outbreak of an epidemic disease may cause a large number of infections and a slightly higher death rate. In response to epidemic disease, both patient transfer and relief distribution are significant to reduce corresponding damage. This study proposes a two-stage multi-objective stochastic model (TMS-PTRD) considering pre-pandemic preparedness measures and post-pandemic relief operations. The proposed model considers the following four objectives: the total number of untreated infected patients, the total transfer time, the overall cost, and the equity distribution of relief supplies. Before an outbreak, the locations of temporary relief distribution centers (TRDCs) and the inventory levels of established TRDCs should be determined. After an outbreak, the locations of temporary hospitals (THs), the locations of designated hospitals (DHs), the transfer plans for patients, and the relief distribution should be determined. To solve the TMS-PTRD model, we address an improved preference-inspired co-evolutionary algorithm named the PICEA-g-AKNN algorithm, which is embedded with a novel similarity distance and three different tailored evolutionary strategies. A real-world case study of Hunan of China and 18 test instances are randomly generated to evaluate the TMS-PTRD model. The finding shows that the PICEA-g-AKNN algorithm is better than some most widely used multi-objective algorithms.

摘要

传染病的爆发可能会导致大量感染和稍高的死亡率。针对传染病,患者转移和救援物资分配对于减少相应的损失都很重要。本研究提出了一种两阶段多目标随机模型(TMS-PTRD),考虑了大流行前的准备措施和大流行后的救援行动。所提出的模型考虑了以下四个目标:未治疗的感染患者总数、总转移时间、总成本和救援物资的公平分配。在疫情爆发前,应确定临时救援分配中心(TRDC)的位置和已建立的 TRDC 的库存水平。疫情爆发后,应确定临时医院(TH)的位置、指定医院(DH)的位置、患者的转移计划和救援物资的分配。为了解决 TMS-PTRD 模型,我们提出了一种改进的基于偏好的协同进化算法,称为 PICEA-g-AKNN 算法,该算法嵌入了一种新的相似性距离和三种不同的定制进化策略。通过对中国湖南省的一个实际案例和 18 个随机生成的测试实例进行研究,评估了 TMS-PTRD 模型。结果表明,PICEA-g-AKNN 算法优于一些最常用的多目标算法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da87/9914173/6f47c82c3558/ijerph-20-01765-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验