Suppr超能文献

低成本传感器网络在检测城市环境中颗粒物细尺度变化的有效性。

Efficacy of Low-Cost Sensor Networks at Detecting Fine-Scale Variations in Particulate Matter in Urban Environments.

机构信息

Department of Earth Sciences, Indiana University-Purdue University Indianapolis (IUPUI), Indianapolis, IN 46202, USA.

Environmental Resilience Institute, Indiana University, Bloomington, IN 47408, USA.

出版信息

Int J Environ Res Public Health. 2023 Jan 20;20(3):1934. doi: 10.3390/ijerph20031934.

Abstract

The negative health impacts of air pollution are well documented. Not as well-documented, however, is how particulate matter varies at the hyper-local scale, and the role that proximal sources play in influencing neighborhood-scale patterns. We examined PM variations in one airshed within Indianapolis (Indianapolis, IN, USA) by utilizing data from 25 active PurpleAir (PA) sensors involving citizen scientists who hosted all but one unit (the control), as well as one EPA monitor. PA sensors report live measurements of PM on a crowd sourced map. After calibrating the data utilizing relative humidity and testing it against a mobile air-quality unit and an EPA monitor, we analyzed PM with meteorological data, tree canopy coverage, land use, and various census variables. Greater proximal tree canopy coverage was related to lower PM concentrations, which translates to greater health benefits. A 1% increase in tree canopy at the census tract level, a boundary delineated by the US Census Bureau, results in a ~0.12 µg/m decrease in PM, and a 1% increase in "heavy industry" results in a 0.07 µg/m increase in PM concentrations. Although the overall results from these 25 sites are within the annual ranges established by the EPA, they reveal substantial variations that reinforce the value of hyper-local sensing technologies as a powerful surveillance tool.

摘要

空气污染对健康的负面影响已有大量文献记载。然而,人们对超局部尺度的颗粒物变化以及近源在影响邻里尺度模式方面所起的作用了解得还不够充分。我们利用来自印第安纳波利斯(印第安纳州,美国)一个空气流域的 25 个活跃的 PurpleAir(PA)传感器的数据,研究了一个空气流域内的 PM 变化情况,这些数据涉及到了除一个单元(对照单元)之外由所有公民科学家托管的传感器,以及一个 EPA 监测器。PA 传感器在众包地图上实时报告 PM 的测量值。在利用相对湿度对数据进行校准并对其进行了移动空气质量单元和 EPA 监测器的测试后,我们利用气象数据、树冠覆盖率、土地利用和各种人口普查变量对 PM 进行了分析。更近的树冠覆盖率与更低的 PM 浓度有关,这意味着更高的健康效益。在人口普查区一级,树冠覆盖率增加 1%,相当于美国人口普查局划定的边界,PM 浓度下降约 0.12 µg/m;而“重工业”增加 1%,PM 浓度则增加 0.07 µg/m。尽管这 25 个地点的总体结果在 EPA 确定的年度范围内,但它们显示出了大量的变化,这强化了超局部感应技术作为一种强大的监测工具的价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf0c/9915248/7eb8a210fa03/ijerph-20-01934-g0A1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验