Suppr超能文献

端粒-端粒酶系统在高海拔地区对健康有害。

The Telomere-Telomerase System Is Detrimental to Health at High-Altitude.

机构信息

Council of Scientific & Industrial Research-Institute of Genomics and Integrative Biology, New Delhi 110007, India.

Institute of Hypoxia Research, New Delhi 110067, India.

出版信息

Int J Environ Res Public Health. 2023 Jan 20;20(3):1935. doi: 10.3390/ijerph20031935.

Abstract

The hypobaric-hypoxia environment at high-altitude (HA, >2500 m) may influence DNA damage due to the production of reactive molecular species and high UV radiation. The telomere system, vital to chromosomal integrity and cellular viability, is prone to oxidative damages contributing to the severity of high-altitude disorders such as high-altitude pulmonary edema (HAPE). However, at the same time, it is suggested to sustain physical performance. This case-control study, comprising 210 HAPE-free (HAPE-f) sojourners, 183 HAPE-patients (HAPE-p) and 200 healthy highland natives (HLs) residing at ~3500 m, investigated telomere length, telomerase activity, and oxidative stress biomarkers. Fluidigm SNP genotyping screened 65 single nucleotide polymorphisms (SNPs) in 11 telomere-maintaining genes. Significance was attained at ≤ 0.05 after adjusting for confounders and correction for multiple comparisons. Shorter telomere length, decreased telomerase activity and increased oxidative stress were observed in HAPE patients; contrarily, longer telomere length and elevated telomerase activity were observed in healthy HA natives compared to HAPE-f. Four SNPs and three haplotypes are associated with HAPE, whereas eight SNPs and nine haplotypes are associated with HA adaptation. Various gene-gene interactions and correlations between/among clinical parameters and biomarkers suggested the presence of a complex interplay underlining HAPE and HA adaptation physiology. A distinctive contribution of the telomere-telomerase system contributing to HA physiology is evident in this study. A normal telomere system may be advantageous in endurance training.

摘要

高海拔(HA,>2500 米)的低气压-低氧环境可能会由于活性分子种类的产生和高 UV 辐射而影响 DNA 损伤。端粒系统对于染色体完整性和细胞活力至关重要,容易受到氧化损伤,这导致了高海拔疾病(如高原肺水肿,HAPE)的严重程度。然而,与此同时,它被建议维持身体表现。这项病例对照研究包括 210 名无 HAPE(HAPE-f)的逗留者、183 名 HAPE 患者(HAPE-p)和 200 名居住在~3500 米高海拔地区的健康高地本地人(HLs),调查了端粒长度、端粒酶活性和氧化应激生物标志物。Fluidigm SNP 基因分型筛选了 11 个端粒维持基因中的 65 个单核苷酸多态性(SNP)。在调整混杂因素和多重比较校正后,达到 ≤0.05 的显著性。与 HAPE-f 相比,HAPE 患者的端粒长度较短、端粒酶活性降低和氧化应激增加;相反,健康 HA 本地人中观察到的端粒长度较长、端粒酶活性升高。有 4 个 SNP 和 3 个单倍型与 HAPE 相关,而 8 个 SNP 和 9 个单倍型与 HA 适应相关。临床参数和生物标志物之间/之间的各种基因-基因相互作用和相关性表明,在 HAPE 和 HA 适应生理学中存在着复杂的相互作用。在这项研究中,端粒-端粒酶系统对 HA 生理学有明显的独特贡献。一个正常的端粒系统可能在耐力训练中是有利的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f801/9915065/43caadf42c30/ijerph-20-01935-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验