文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

评估 AIML + HDR-A 课程,以增强西班牙裔生物医学研究人员的数据科学劳动力能力。

Evaluation of AIML + HDR-A Course to Enhance Data Science Workforce Capacity for Hispanic Biomedical Researchers.

机构信息

RCMI-CCRHD Program, Medical Sciences Campus, University of Puerto Rico, San Juan 00934, Puerto Rico.

Department of Public Health, Medical Sciences Campus, University of Puerto Rico, San Juan 00934, Puerto Rico.

出版信息

Int J Environ Res Public Health. 2023 Feb 3;20(3):2726. doi: 10.3390/ijerph20032726.


DOI:10.3390/ijerph20032726
PMID:36768092
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9914971/
Abstract

Artificial intelligence (AI) and machine learning (ML) facilitate the creation of revolutionary medical techniques. Unfortunately, biases in current AI and ML approaches are perpetuating minority health inequity. One of the strategies to solve this problem is training a diverse workforce. For this reason, we created the course "Artificial Intelligence and Machine Learning applied to Health Disparities Research (AIML + HDR)" which applied general Data Science (DS) approaches to health disparities research with an emphasis on Hispanic populations. Some technical topics covered included the Jupyter Notebook Framework, coding with R and Python to manipulate data, and ML libraries to create predictive models. Some health disparities topics covered included Electronic Health Records, Social Determinants of Health, and Bias in Data. As a result, the course was taught to 34 selected Hispanic participants and evaluated by a survey on a Likert scale (0-4). The surveys showed high satisfaction (more than 80% of participants agreed) regarding the course organization, activities, and covered topics. The students strongly agreed that the activities were relevant to the course and promoted their learning (3.71 ± 0.21). The students strongly agreed that the course was helpful for their professional development (3.76 ± 0.18). The open question was quantitatively analyzed and showed that seventy-five percent of the comments received from the participants confirmed their great satisfaction.

摘要

人工智能(AI)和机器学习(ML)促进了革命性医学技术的创造。不幸的是,当前 AI 和 ML 方法中的偏见正在加剧少数族裔健康不平等。解决这个问题的策略之一是培训多元化的劳动力。出于这个原因,我们创建了课程“应用于健康差异研究的人工智能和机器学习(AIML + HDR)”,该课程将一般数据科学(DS)方法应用于健康差异研究,重点关注西班牙裔人群。涵盖的一些技术主题包括 Jupyter Notebook 框架、使用 R 和 Python 进行数据操作以及创建预测模型的 ML 库。涵盖的一些健康差异主题包括电子健康记录、健康的社会决定因素和数据偏差。结果,该课程教授给 34 名选定的西班牙裔参与者,并通过李克特量表(0-4)进行了调查评估。调查显示,参与者对课程组织、活动和涵盖的主题非常满意(超过 80%的参与者表示同意)。学生强烈同意这些活动与课程相关,并促进了他们的学习(3.71 ± 0.21)。学生强烈同意该课程有助于他们的职业发展(3.76 ± 0.18)。对开放式问题进行了定量分析,结果表明,参与者的 75%的评论都证实了他们非常满意。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d03/9914971/6dcac147aa51/ijerph-20-02726-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d03/9914971/f5c6f8c2da6a/ijerph-20-02726-g001a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d03/9914971/095d42f07a98/ijerph-20-02726-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d03/9914971/237cac936243/ijerph-20-02726-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d03/9914971/ae41fc7df5fa/ijerph-20-02726-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d03/9914971/9bbf0815281b/ijerph-20-02726-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d03/9914971/5b52ee507a0f/ijerph-20-02726-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d03/9914971/6dcac147aa51/ijerph-20-02726-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d03/9914971/f5c6f8c2da6a/ijerph-20-02726-g001a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d03/9914971/095d42f07a98/ijerph-20-02726-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d03/9914971/237cac936243/ijerph-20-02726-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d03/9914971/ae41fc7df5fa/ijerph-20-02726-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d03/9914971/9bbf0815281b/ijerph-20-02726-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d03/9914971/5b52ee507a0f/ijerph-20-02726-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d03/9914971/6dcac147aa51/ijerph-20-02726-g007.jpg

相似文献

[1]
Evaluation of AIML + HDR-A Course to Enhance Data Science Workforce Capacity for Hispanic Biomedical Researchers.

Int J Environ Res Public Health. 2023-2-3

[2]
Summary of Year-One Effort of the RCMI Consortium to Enhance Research Capacity and Diversity with Data Science.

Int J Environ Res Public Health. 2022-12-24

[3]
An equitable and sustainable community of practice framework to address the use of artificial intelligence for global health workforce training.

Hum Resour Health. 2023-6-13

[4]
Data science, artificial intelligence, and machine learning: Opportunities for laboratory medicine and the value of positive regulation.

Clin Biochem. 2019-7

[5]
Biomaterialomics: Data science-driven pathways to develop fourth-generation biomaterials.

Acta Biomater. 2022-4-15

[6]
A primer on applying AI synergistically with domain expertise to oncology.

Biochim Biophys Acta Rev Cancer. 2021-8

[7]
Artificial intelligence (AI) in biomedical research: discussion on authors' declaration of AI in their articles title.

Eur Radiol Exp. 2023-1-16

[8]
Deep transfer learning for reducing health care disparities arising from biomedical data inequality.

Nat Commun. 2020-10-12

[9]
Application of Artificial Intelligence in Pharmaceutical and Biomedical Studies.

Curr Pharm Des. 2020

[10]
Machine Learning in Clinical Psychology and Psychotherapy Education: A Mixed Methods Pilot Survey of Postgraduate Students at a Swiss University.

Front Public Health. 2021

引用本文的文献

[1]
Assessing the Impact of AI Education on Hispanic Healthcare Professionals' Perceptions and Knowledge.

Educ Sci (Basel). 2024-4

本文引用的文献

[1]
Presenting artificial intelligence, deep learning, and machine learning studies to clinicians and healthcare stakeholders: an introductory reference with a guideline and a Clinical AI Research (CAIR) checklist proposal.

Acta Orthop. 2021-10

[2]
Cancer health disparities in racial/ethnic minorities in the United States.

Br J Cancer. 2021-1

[3]
Hidden in Plain Sight - Reconsidering the Use of Race Correction in Clinical Algorithms.

N Engl J Med. 2020-8-27

[4]
Teaching Intersectionality of Sexual Orientation, Gender Identity, and Race/Ethnicity in a Health Disparities Course.

MedEdPORTAL. 2020-7-31

[5]
Dissecting racial bias in an algorithm used to manage the health of populations.

Science. 2019-10-25

[6]
An Introduction to Machine Learning for Clinicians.

Acad Med. 2019-10

[7]
Machine Learning in Medicine.

N Engl J Med. 2019-4-4

[8]
Machine Learning for Prediction in Electronic Health Data.

JAMA Netw Open. 2018-8-3

[9]
Cancer Statistics for Hispanics/Latinos, 2018.

CA Cancer J Clin. 2018-10-4

[10]
FAIR: A Call to Make Published Data More Findable, Accessible, Interoperable, and Reusable.

Mol Plant. 2018-9-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索