文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

向临床医生和医疗保健利益相关者介绍人工智能、深度学习和机器学习研究:一份带有指南和临床人工智能研究 (CAIR) 清单提案的入门参考资料。

Presenting artificial intelligence, deep learning, and machine learning studies to clinicians and healthcare stakeholders: an introductory reference with a guideline and a Clinical AI Research (CAIR) checklist proposal.

机构信息

Institute of Clinical Sciences, Danderyd University Hospital, Karolinska Institute, Sweden.

Department of Computer and System Sciences, Stockholm University, Sweden.

出版信息

Acta Orthop. 2021 Oct;92(5):513-525. doi: 10.1080/17453674.2021.1918389. Epub 2021 May 14.


DOI:10.1080/17453674.2021.1918389
PMID:33988081
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8519529/
Abstract

Background and purpose - Artificial intelligence (AI), deep learning (DL), and machine learning (ML) have become common research fields in orthopedics and medicine in general. Engineers perform much of the work. While they gear the results towards healthcare professionals, the difference in competencies and goals creates challenges for collaboration and knowledge exchange. We aim to provide clinicians with a context and understanding of AI research by facilitating communication between creators, researchers, clinicians, and readers of medical AI and ML research.Methods and results - We present the common tasks, considerations, and pitfalls (both methodological and ethical) that clinicians will encounter in AI research. We discuss the following topics: labeling, missing data, training, testing, and overfitting. Common performance and outcome measures for various AI and ML tasks are presented, including accuracy, precision, recall, F1 score, Dice score, the area under the curve, and ROC curves. We also discuss ethical considerations in terms of privacy, fairness, autonomy, safety, responsibility, and liability regarding data collecting or sharing.Interpretation - We have developed guidelines for reporting medical AI research to clinicians in the run-up to a broader consensus process. The proposed guidelines consist of a Clinical Artificial Intelligence Research (CAIR) checklist and specific performance metrics guidelines to present and evaluate research using AI components. Researchers, engineers, clinicians, and other stakeholders can use these proposal guidelines and the CAIR checklist to read, present, and evaluate AI research geared towards a healthcare setting.

摘要

背景与目的-人工智能(AI)、深度学习(DL)和机器学习(ML)已经成为骨科和一般医学领域的常见研究领域。工程师完成了大部分工作。虽然他们将研究结果针对医疗保健专业人员,但能力和目标的差异为合作和知识交流带来了挑战。我们旨在通过促进医学 AI 和 ML 研究的创作者、研究人员、临床医生和读者之间的沟通,为临床医生提供对 AI 研究的背景和理解。

方法与结果-我们介绍了临床医生在 AI 研究中会遇到的常见任务、注意事项和陷阱(包括方法和道德方面)。我们讨论了以下主题:标记、缺失数据、训练、测试和过拟合。我们还介绍了各种 AI 和 ML 任务的常见性能和结果衡量标准,包括准确性、精度、召回率、F1 分数、Dice 分数、曲线下面积和 ROC 曲线。我们还讨论了数据收集或共享方面的隐私、公平、自主、安全、责任和责任等道德方面的考虑因素。

解释-我们已经制定了向临床医生报告医学 AI 研究的指南,以促进更广泛的共识过程。拟议的指南包括临床人工智能研究(CAIR)检查表和特定的性能指标指南,用于展示和评估使用 AI 组件的研究。研究人员、工程师、临床医生和其他利益相关者可以使用这些提案指南和 CAIR 检查表来阅读、呈现和评估面向医疗保健环境的 AI 研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31d4/8519529/ba054da63bbe/IORT_A_1918389_F0005_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31d4/8519529/df8d677637f6/IORT_A_1918389_F0001_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31d4/8519529/b3f8fe557547/IORT_A_1918389_F0002_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31d4/8519529/4beef0dc92bc/IORT_A_1918389_F0003_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31d4/8519529/71bd7519bc99/IORT_A_1918389_F0004_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31d4/8519529/ba054da63bbe/IORT_A_1918389_F0005_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31d4/8519529/df8d677637f6/IORT_A_1918389_F0001_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31d4/8519529/b3f8fe557547/IORT_A_1918389_F0002_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31d4/8519529/4beef0dc92bc/IORT_A_1918389_F0003_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31d4/8519529/71bd7519bc99/IORT_A_1918389_F0004_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31d4/8519529/ba054da63bbe/IORT_A_1918389_F0005_C.jpg

相似文献

[1]
Presenting artificial intelligence, deep learning, and machine learning studies to clinicians and healthcare stakeholders: an introductory reference with a guideline and a Clinical AI Research (CAIR) checklist proposal.

Acta Orthop. 2021-10

[2]
Ethical considerations on artificial intelligence in dentistry: A framework and checklist.

J Dent. 2023-8

[3]
Protocol for development of a reporting guideline (TRIPOD-AI) and risk of bias tool (PROBAST-AI) for diagnostic and prognostic prediction model studies based on artificial intelligence.

BMJ Open. 2021-7-9

[4]
The future of Cochrane Neonatal.

Early Hum Dev. 2020-11

[5]
A checklist for reporting, reading and evaluating Artificial Intelligence Technology Enhanced Learning (AITEL) research in medical education.

Med Teach. 2024-9

[6]
Review of study reporting guidelines for clinical studies using artificial intelligence in healthcare.

BMJ Health Care Inform. 2021-8

[7]
Guidelines for clinical trial protocols for interventions involving artificial intelligence: the SPIRIT-AI extension.

Lancet Digit Health. 2020-10

[8]
Meta-research on reporting guidelines for artificial intelligence: are authors and reviewers encouraged enough in radiology, nuclear medicine, and medical imaging journals?

Diagn Interv Radiol. 2024-9-9

[9]
Reporting guidelines for clinical trial reports for interventions involving artificial intelligence: the CONSORT-AI extension.

Lancet Digit Health. 2020-10

[10]
Comparison of Chest Radiograph Interpretations by Artificial Intelligence Algorithm vs Radiology Residents.

JAMA Netw Open. 2020-10-1

引用本文的文献

[1]
Artificial intelligence and radiomics applications in adrenal lesions: a systematic review.

Ther Adv Urol. 2025-8-2

[2]
TRIPOD+AI statement: updated guidance for reporting clinical prediction models that use regression or machine learning methods: a Korean translation.

Ewha Med J. 2025-7

[3]
Touchless monitoring of neonatal activity: a multi-center study.

Pediatr Res. 2025-7-24

[4]
Open-source convolutional neural network to classify distal radial fractures according to the AO/OTA classification on plain radiographs.

Eur J Trauma Emerg Surg. 2025-7-21

[5]
Use of artificial intelligence in the analysis of digital videos of invasive surgical procedures: scoping review.

BJS Open. 2025-7-1

[6]
Semantic Evaluation of Nursing Assessment Scales Translations by ChatGPT 4.0: A Lexicometric Analysis.

Nurs Rep. 2025-6-11

[7]
Identifying early blood glucose trajectories in sepsis linked to distinct long-term outcomes: a K-means clustering study with external validation.

Front Immunol. 2025-6-5

[8]
Harnessing Artificial Intelligence in Drug Discovery: Transformative Approaches and Future Directions.

J Pharm Bioallied Sci. 2025-5

[9]
Assessment of Performance, Interpretability, and Explainability in Artificial Intelligence-Based Health Technologies: What Healthcare Stakeholders Need to Know.

Mayo Clin Proc Digit Health. 2023-4-21

[10]
Artificial intelligence in pediatric medicine: a call for rigorous reporting standards.

J Perinatol. 2025-4-2

本文引用的文献

[1]
Using artificial intelligence on dermatology conditions in Uganda: a case for diversity in training data sets for machine learning.

Afr Health Sci. 2023-6

[2]
Stop Explaining Black Box Machine Learning Models for High Stakes Decisions and Use Interpretable Models Instead.

Nat Mach Intell. 2019-5

[3]
Guidelines for clinical trial protocols for interventions involving artificial intelligence: the SPIRIT-AI extension.

Lancet Digit Health. 2020-10

[4]
Ankle fracture classification using deep learning: automating detailed AO Foundation/Orthopedic Trauma Association (AO/OTA) 2018 malleolar fracture identification reaches a high degree of correct classification.

Acta Orthop. 2021-2

[5]
Artificial intelligence in drug discovery and development.

Drug Discov Today. 2021-1

[6]
Key insights in the AIDA community policy on sharing of clinical imaging data for research in Sweden.

Sci Data. 2020-10-6

[7]
Automated rotator cuff tear classification using 3D convolutional neural network.

Sci Rep. 2020-9-24

[8]
Reporting guidelines for clinical trial reports for interventions involving artificial intelligence: the CONSORT-AI extension.

Nat Med. 2020-9-9

[9]
Presenting machine learning model information to clinical end users with model facts labels.

NPJ Digit Med. 2020-3-23

[10]
The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation.

BMC Genomics. 2020-1-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索