Suppr超能文献

肌萎缩侧索硬化症的弥散张量成像:用于生物标志物开发的机器学习。

Diffusion Tensor Imaging in Amyotrophic Lateral Sclerosis: Machine Learning for Biomarker Development.

机构信息

Department of Neurology, University of Ulm, Oberer Eselsberg 45, 89081 Ulm, Germany.

German Center for Neurodegenerative Diseases (DZNE), 89081 Ulm, Germany.

出版信息

Int J Mol Sci. 2023 Jan 18;24(3):1911. doi: 10.3390/ijms24031911.

Abstract

Diffusion tensor imaging (DTI) allows the in vivo imaging of pathological white matter alterations, either with unbiased voxel-wise or hypothesis-guided tract-based analysis. Alterations of diffusion metrics are indicative of the cerebral status of patients with amyotrophic lateral sclerosis (ALS) at the individual level. Using machine learning (ML) models to analyze complex and high-dimensional neuroimaging data sets, new opportunities for DTI-based biomarkers in ALS arise. This review aims to summarize how different ML models based on DTI parameters can be used for supervised diagnostic classifications and to provide individualized patient stratification with unsupervised approaches in ALS. To capture the whole spectrum of neuropathological signatures, DTI might be combined with additional modalities, such as structural T1w 3-D MRI in ML models. To further improve the power of ML in ALS and enable the application of deep learning models, standardized DTI protocols and multi-center collaborations are needed to validate multimodal DTI biomarkers. The application of ML models to multiparametric MRI/multimodal DTI-based data sets will enable a detailed assessment of neuropathological signatures in patients with ALS and the development of novel neuroimaging biomarkers that could be used in the clinical workup.

摘要

弥散张量成像(DTI)允许对病态的白质改变进行活体成像,无论是使用无偏置体素分析还是基于假设的束路径分析。扩散指标的改变表明肌萎缩侧索硬化症(ALS)患者在个体水平上的大脑状态。使用机器学习(ML)模型分析复杂和高维的神经影像学数据集,为基于 DTI 的 ALS 生物标志物提供了新的机会。本综述旨在总结基于 DTI 参数的不同 ML 模型如何用于监督诊断分类,并为 ALS 患者提供无监督方法的个体化分层。为了捕捉整个神经病理学特征谱,DTI 可能与其他模态结合,例如 ML 模型中的结构 T1w 3-D MRI。为了进一步提高 ML 在 ALS 中的能力并实现深度学习模型的应用,需要标准化的 DTI 协议和多中心合作来验证多模态 DTI 生物标志物。将 ML 模型应用于多参数 MRI/多模态 DTI 数据集将能够对 ALS 患者的神经病理学特征进行详细评估,并开发新的神经影像学生物标志物,可用于临床评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc1f/9915541/7e243944dfd4/ijms-24-01911-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验