Suppr超能文献

GBM 靶向纳米粒子表面修饰的最新进展:靶向策略和表面特性。

Recent Advances on Surface-Modified GBM Targeted Nanoparticles: Targeting Strategies and Surface Characterization.

机构信息

Clinical and Experimental Medicine, University of Modena and Reggio Emilia, 41125 Modena, Italy.

IRCCS Fondazione Don Carlo Gnocchi ONLUS, 20148 Milan, Italy.

出版信息

Int J Mol Sci. 2023 Jan 27;24(3):2496. doi: 10.3390/ijms24032496.

Abstract

Glioblastoma multiforme (GBM) is the most common malignant brain tumor, associated with low long-term survival. Nanoparticles (NPs) developed against GBM are a promising strategy to improve current therapies, by enhancing the brain delivery of active molecules and reducing off-target effects. In particular, NPs hold high potential for the targeted delivery of chemotherapeutics both across the blood-brain barrier (BBB) and specifically to GBM cell receptors, pathways, or the tumor microenvironment (TME). In this review, the most recent strategies to deliver drugs to GBM are explored. The main focus is on how surface functionalizations are essential for BBB crossing and for tumor specific targeting. We give a critical analysis of the various ligand-based approaches that have been used to target specific cancer cell receptors and the TME, or to interfere with the signaling pathways of GBM. Despite the increasing application of NPs in the clinical setting, new methods for ligand and surface characterization are needed to optimize the synthesis, as well as to predict their in vivo behavior. An expert opinion is given on the future of this research and what is still missing to create and characterize a functional NP system for improved GBM targeting.

摘要

多形性胶质母细胞瘤(GBM)是最常见的恶性脑肿瘤,患者长期生存率低。针对 GBM 开发的纳米颗粒(NPs)是一种很有前途的策略,可以通过增强活性分子向大脑的传递并减少脱靶效应来改善当前的治疗方法。特别是,纳米颗粒在靶向递送到血脑屏障(BBB)以及特定到 GBM 细胞受体、途径或肿瘤微环境(TME)方面具有很高的潜力。在这篇综述中,探讨了将药物递送到 GBM 的最新策略。主要重点是表面功能化对于 BBB 穿透和肿瘤特异性靶向的重要性。我们对用于靶向特定癌细胞受体和 TME 的各种基于配体的方法进行了批判性分析,或者干扰 GBM 的信号通路。尽管 NPs 在临床环境中的应用越来越广泛,但仍需要新的配体和表面表征方法来优化合成,并预测其体内行为。本文就这一研究的未来以及为了创建和表征用于改善 GBM 靶向的功能性 NP 系统还需要什么给出了专家意见。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/001d/9916841/5f930245b10d/ijms-24-02496-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验