Suppr超能文献

SIGRN:使用软自省变分自编码器推断基因调控网络。

SIGRN: Inferring Gene Regulatory Network with Soft Introspective Variational Autoencoders.

作者信息

Li Rongyuan, Wu Jingli, Li Gaoshi, Liu Jiafei, Liu Jinlu, Xuan Junbo, Deng Zheng

机构信息

Key Lab of Education Blockchain and Intelligent Technology, Ministry of Education, Guangxi Normal University, Guilin 541004, China.

Guangxi Key Lab of Multi-Source Information Mining & Security, Guangxi Normal University, Guilin 541004, China.

出版信息

Int J Mol Sci. 2024 Nov 27;25(23):12741. doi: 10.3390/ijms252312741.

Abstract

Gene regulatory networks (GRNs) exhibit the complex regulatory relationships among genes, which are essential for understanding developmental biology and uncovering the fundamental aspects of various biological phenomena. It is an effective and economical way to infer GRNs from single-cell RNA sequencing (scRNA-seq) with computational methods. Recent researches have been done on the problem by using variational autoencoder (VAE) and structural equation model (SEM). Due to the shortcoming of VAE generating poor-quality data, in this paper, a soft introspective adversarial gene regulatory network unsupervised inference model, called SIGRN, is proposed by introducing adversarial mechanism in building a variational autoencoder model. SIGRN applies "soft" introspective adversarial mode to avoid training additional neural networks and adding additional training parameters. It demonstrates superior inference accuracy across most benchmark datasets when compared to nine leading-edge methods. In addition, method SIGRN also achieves better performance on representing cells and generating scRNA-seq data in most datasets. All of which have been verified via substantial experiments. The SIGRN method shows promise for generating scRNA-seq data and inferring GRNs.

摘要

基因调控网络(GRNs)展现了基因之间复杂的调控关系,这对于理解发育生物学和揭示各种生物学现象的基本方面至关重要。利用计算方法从单细胞RNA测序(scRNA-seq)推断基因调控网络是一种有效且经济的方式。最近已经通过使用变分自编码器(VAE)和结构方程模型(SEM)对该问题进行了研究。由于VAE存在生成低质量数据的缺点,本文通过在构建变分自编码器模型时引入对抗机制,提出了一种名为SIGRN的软自省对抗基因调控网络无监督推理模型。SIGRN应用“软”自省对抗模式,以避免训练额外的神经网络和添加额外的训练参数。与九种前沿方法相比,它在大多数基准数据集上展示出了卓越的推理准确性。此外,SIGRN方法在大多数数据集中的细胞表示和scRNA-seq数据生成方面也取得了更好的性能。所有这些都已通过大量实验得到验证。SIGRN方法在生成scRNA-seq数据和推断基因调控网络方面显示出了潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e41b/11641499/e8450f3dfc36/ijms-25-12741-g0A1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验