Microsystems Laboratory-LMIS4, EPFL, 1015 Lausanne, Switzerland.
Department of Pathology and Immunology, Faculty of Medicine, CMU, 1211 Geneva, Switzerland.
Int J Mol Sci. 2023 Feb 2;24(3):2842. doi: 10.3390/ijms24032842.
Biochemical and biophysical properties instruct cardiac tissue morphogenesis. Here, we are reporting on a blend of cardiac decellularized extracellular matrix (dECM) from porcine ventricular tissue and fibrinogen that is suitable for investigations employing an in vitro 3D cardiac cell culture model. Rapid and specific coagulation with thrombin facilitates the gentle inclusion of cells while avoiding sedimentation during formation of the dECM-fibrin composite. Our investigations revealed enhanced cardiogenic differentiation in the H9c2 myoblast cells when using the system in a co-culture with Nor-10 fibroblasts. Further enhancement of differentiation efficiency was achieved by 3D embedding of rat neonatal cardiomyocytes in the 3D system. Calcium imaging and analysis of beating motion both indicate that the dECM-fibrin composite significantly enhances recovery, frequency, synchrony, and the maintenance of spontaneous beating, as compared to various controls including Matrigel, pure fibrin and collagen I as well as a fibrin-collagen I blend.
生物化学和生物物理特性指导心脏组织形态发生。在这里,我们报告了一种猪心室组织脱细胞细胞外基质 (dECM) 和纤维蛋白原的混合物,适用于体外 3D 心脏细胞培养模型的研究。凝血酶的快速和特异性凝固有助于在形成 dECM-纤维蛋白复合物的过程中温和地包含细胞,同时避免沉淀。我们的研究表明,当与 Nor-10 成纤维细胞共培养时,该系统在 H9c2 成肌细胞中的心脏发生分化增强。通过将大鼠新生心肌细胞 3D 嵌入 3D 系统,进一步提高了分化效率。钙成像和跳动运动分析均表明,与包括 Matrigel、纯纤维蛋白和胶原蛋白 I 以及纤维蛋白-胶原蛋白 I 混合物在内的各种对照相比,dECM-纤维蛋白复合物显著增强了恢复、频率、同步性和自发性跳动的维持。