Suppr超能文献

基于机器学习的新发银屑病关节炎患者中重度疾病活动度——多变量预测模型

Moderate-High Disease Activity in Patients with Recent-Onset Psoriatic Arthritis-Multivariable Prediction Model Based on Machine Learning.

作者信息

Queiro Rubén, Seoane-Mato Daniel, Laiz Ana, Galindez Agirregoikoa Eva, Montilla Carlos, Park Hye S, Tasende Jose A Pinto, Baute Juan J Bethencourt, Joven Ibáñez Beatriz, Toniolo Elide, Ramírez Julio, Montero Nuria, Pruenza García-Hinojosa Cristina, Serrano García Ana

机构信息

Rheumatology Service & the Principality of Asturias Institute for Health Research (ISPA), Faculty of Medicine, Universidad de Oviedo, 33006 Oviedo, Spain.

Research Unit, Spanish Society of Rheumatology, 28001 Madrid, Spain.

出版信息

J Clin Med. 2023 Jan 25;12(3):931. doi: 10.3390/jcm12030931.

Abstract

The aim was to identify patient- and disease-related characteristics predicting moderate-to-high disease activity in recent-onset psoriatic arthritis (PsA). We performed a multicenter observational prospective study (2-year follow-up, regular annual visits) in patients aged ≥18 years who fulfilled the CASPAR criteria and had less than 2 years since the onset of symptoms. The moderate-to-high activity of PsA was defined as DAPSA > 14. We trained a logistic regression model and random forest-type and XGBoost machine learning algorithms to analyze the association between the outcome measure and the variables selected in the bivariate analysis. The sample comprised 158 patients. At the first follow-up visit, 20.8% of the patients who attended the clinic had a moderate-to-severe disease. This percentage rose to 21.2% on the second visit. The variables predicting moderate-high activity were the PsAID score, tender joint count, level of physical activity, and sex. The mean values of the measures of validity of the machine learning algorithms were all high, especially sensitivity (98%; 95% CI: 86.89-100.00). PsAID was the most important variable in the prediction algorithms, reinforcing the convenience of its inclusion in daily clinical practice. Strategies that focus on the needs of women with PsA should be considered.

摘要

目的是确定预测近期发病的银屑病关节炎(PsA)中重度疾病活动的患者及疾病相关特征。我们对年龄≥18岁、符合CASPAR标准且症状出现后不到2年的患者进行了一项多中心观察性前瞻性研究(2年随访,每年定期就诊)。PsA的中重度活动定义为DAPSA>14。我们训练了一个逻辑回归模型以及随机森林型和XGBoost机器学习算法,以分析结果指标与双变量分析中选择的变量之间的关联。样本包括158名患者。在首次随访时,到诊所就诊的患者中有20.8%患有中度至重度疾病。第二次就诊时,这一比例升至21.2%。预测中高活动度的变量是PsAID评分、压痛关节计数、身体活动水平和性别。机器学习算法有效性指标的平均值都很高,尤其是敏感性(98%;95%CI:86.89-100.oo)。PsAID是预测算法中最重要的变量,这进一步证明了将其纳入日常临床实践的便利性。应考虑关注PsA女性患者需求的策略。

相似文献

8
Psoriatic Arthritis Acceptable Symptoms State: Does Sex Make a Difference?银屑病关节炎可接受症状状态:性别有差异吗?
Rheumatol Ther. 2024 Oct;11(5):1393-1402. doi: 10.1007/s40744-024-00698-7. Epub 2024 Jul 13.

本文引用的文献

6
Obesity and Psoriatic Arthritis: A Narrative Review.肥胖与银屑病关节炎:一篇叙述性综述。
Rheumatol Ther. 2020 Sep;7(3):447-456. doi: 10.1007/s40744-020-00215-6. Epub 2020 Jun 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验