Suppr超能文献

TC4/AZ31镁基纳米复合材料的微观结构与力学性能研究

Study on Microstructure and Mechanical Properties of TC4/AZ31 Magnesium Matrix Nanocomposites.

作者信息

Chen Yong, Yao Yuan, Han Shengli, Feng Xiaowei, Luo Tiegang, Zheng Kaihong

机构信息

College of Mechanical Engineering, University of South China, Hengyang 421101, China.

Guangdong Provincial Key Laboratory of Metal Toughening Technology and Application, Institute of New Materials, Guangdong Academy of Sciences, National Engineering Research Center of Powder Metallurgy of Titanium & Rare Metals, Guangzhou 510650, China.

出版信息

Materials (Basel). 2023 Jan 29;16(3):1139. doi: 10.3390/ma16031139.

Abstract

In the field of metal matrix composites, it is a great challenge to improve the strength and elongation of magnesium matrix composites simultaneously. In this work, xTC4/AZ31 (x = 0.5, 1, 1.5 wt.%) composites were fabricated by spark plasma sintering (SPS) followed by hot extrusion. Scanning electron microscopy (SEM) showed that nano-TC4 (Ti-6Al-4V) was well dispersed in the AZ31 matrix. We studied the microstructure evolution and tensile properties of the composites, and analyzed the strengthening mechanism of nano-TC4 on magnesium matrix composites. The results showed that magnesium matrix composites with 1 wt.%TC4 had good comprehensive properties; compared with the AZ31 matrix, the yield strength (YS) was increased by 20.4%, from 162 MPa to 195 MPa; the ultimate tensile strength (UTS) was increased by 11.7%, from 274 MPa to 306 MPa, and the failure strain (FS) was increased by 21.1%, from 7.6% to 9.2%. The improvement in strength was mainly due to grain refinement and good interfacial bonding between nano-TC4 and the Mg matrix. The increase in elongation was the result of grain refinement and a weakened texture.

摘要

在金属基复合材料领域,同时提高镁基复合材料的强度和伸长率是一项巨大挑战。在本研究中,通过放电等离子烧结(SPS)然后热挤压制备了xTC4/AZ31(x = 0.5、1、1.5 wt.%)复合材料。扫描电子显微镜(SEM)显示,纳米TC4(Ti-6Al-4V)在AZ31基体中分散良好。我们研究了复合材料的微观结构演变和拉伸性能,并分析了纳米TC4对镁基复合材料的强化机制。结果表明,含1 wt.%TC4的镁基复合材料具有良好的综合性能;与AZ31基体相比,屈服强度(YS)提高了20.4%,从162 MPa提高到195 MPa;极限抗拉强度(UTS)提高了11.7%,从274 MPa提高到306 MPa,断裂应变(FS)提高了21.1%,从7.6%提高到9.2%。强度的提高主要归因于晶粒细化以及纳米TC4与镁基体之间良好的界面结合。伸长率的增加是晶粒细化和织构弱化的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c38a/9920753/0b1186dd91a5/materials-16-01139-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验