Estupinán-López Francisco, Orquiz-Muela Carlos, Gaona-Tiburcio Citlalli, Cabral-Miramontes Jose, Bautista-Margulis Raul German, Nieves-Mendoza Demetrio, Maldonado-Bandala Erick, Almeraya-Calderón Facundo, Lopes Amit Joe
Centro de Investigación e Innovación en Ingeniería Aeronáutica (CIIIA), FIME, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Mexico.
W. M. Keck Center for 3D Innovation, The University of Texas at El Paso, El Paso, TX 79968, USA.
Materials (Basel). 2023 Jan 30;16(3):1187. doi: 10.3390/ma16031187.
New manufacturing processes for metal parts such as additive manufacturing (AM) provide a technological development for the aeronautical and aerospace industries, since these AM processes are a means to reduce the weight of the parts, which generate cost savings. AM techniques such as Laser Powder Bed Fusions (LPBF) and Electron Beam Fusion (EBM), provided an improvement in mechanical properties, corrosion resistance, and thermal stability at temperatures below 400 °C, in comparison to conventional methods. This research aimed to study the oxidation kinetics of Ti-6Al-4V alloys by conventional and Electron Beam Additive Manufacturing. The thermogravimetric analysis was performed at temperatures of 600 °C, 800 °C, and 900 °C, having a heating rate of 25 °C/min and oxidation time of 24 h. The microstructural analysis was carried out by thermogravimetric analysis. Thickness and morphology of oxide layers were analyzed by field emission scanning electron microscope, phase identification (before and after the oxidation process) was realized by X-ray diffraction at room temperature and hardness measurements were made in cross section. Results indicated that the oxidation kinetics of Ti-6Al-4V alloys fabricated by EBM was similar to conventional processing and obeyed a parabolic or quasi-parabolic kinetics. The samples oxidized at 600 °C for 24 h presented the lowest hardness values (from 350 to 470 HV). At oxidation temperatures of 800 and 900 °C, however, highest hardness values (from 870 close to the alpha-case interface up to 300 HV in base metal) were found on the surface and gradually decreased towards the center of the base alloy. This may be explained by different microstructures presented in the manufacturing processes.
金属零件的新制造工艺,如增材制造(AM),为航空航天工业带来了技术发展,因为这些增材制造工艺是减轻零件重量的一种手段,从而节省成本。与传统方法相比,激光粉末床熔融(LPBF)和电子束熔融(EBM)等增材制造技术在低于400°C的温度下,改善了机械性能、耐腐蚀性和热稳定性。本研究旨在通过传统方法和电子束增材制造研究Ti-6Al-4V合金的氧化动力学。热重分析在600°C、800°C和900°C的温度下进行,加热速率为25°C/min,氧化时间为24小时。通过热重分析进行微观结构分析。通过场发射扫描电子显微镜分析氧化层的厚度和形态,在室温下通过X射线衍射实现氧化过程前后的相鉴定,并在横截面上进行硬度测量。结果表明,电子束熔炼制造的Ti-6Al-4V合金的氧化动力学与传统工艺相似,遵循抛物线或准抛物线动力学。在600°C氧化24小时的样品硬度值最低(350至470 HV)。然而,在800°C和900°C的氧化温度下,表面发现最高硬度值(从靠近α相界面的870 HV到母材中的300 HV),并向母材中心逐渐降低。这可能是由制造过程中呈现的不同微观结构所解释的。