Suppr超能文献

严重塑性变形能否调节铁基金属玻璃中的纳米晶化?

Can Severe Plastic Deformation Tune Nanocrystallization in Fe-Based Metallic Glasses?

作者信息

Antoni Monika, Spieckermann Florian, Plutta Niklas, Gammer Christoph, Kapp Marlene, Ramasamy Parthiban, Polak Christian, Pippan Reinhard, Zehetbauer Michael J, Eckert Jürgen

机构信息

Erich Schmid Institute of Materials Science, Austrian Academy of Sciences, 8700 Leoben, Austria.

Department of Materials Science, Chair of Materials Physics, Montanuniversität Leoben, 8700 Leoben, Austria.

出版信息

Materials (Basel). 2023 Feb 1;16(3):1260. doi: 10.3390/ma16031260.

Abstract

The effects of severe plastic deformation (SPD) by means of high-pressure torsion (HPT) on the structural properties of the two iron-based metallic glasses FeCuNbSiB and FeCoSiBPCu have been investigated and compared. While for FeCuNbSiB, HPT processing allows us to extend the known consolidation and deformation ranges, HPT processing of FeCoSiBPCu for the first time ever achieves consolidation and deformation with a minimum number of cracks. Using numerous analyses such as X-ray diffraction, dynamic mechanical analyses, and differential scanning calorimetry, as well as optical and transmission electron microscopy, clearly reveals that FeCoSiBPCu exhibits HPT-induced crystallization phenomena, while FeCuNbSiB does not crystallize even at the highest HPT-deformation degrees applied. The reasons for these findings are discussed in terms of differences in the deformation energies expended, and the number and composition of the individual crystalline phases formed. The results appear promising for obtaining improved magnetic properties of glassy alloys without additional thermal treatment.

摘要

通过高压扭转(HPT)进行严重塑性变形(SPD)对两种铁基金属玻璃FeCuNbSiB和FeCoSiBPCu结构性能的影响已得到研究和比较。对于FeCuNbSiB,HPT加工使我们能够扩展已知的固结和变形范围,而FeCoSiBPCu的HPT加工首次以最少的裂纹实现了固结和变形。使用诸如X射线衍射、动态力学分析、差示扫描量热法以及光学和透射电子显微镜等多种分析方法,清楚地表明FeCoSiBPCu呈现出HPT诱导的结晶现象,而FeCuNbSiB即使在施加的最高HPT变形程度下也不会结晶。从所消耗的变形能量差异以及形成的各个晶相的数量和组成方面讨论了这些发现的原因。结果表明,无需额外的热处理就能获得改善的玻璃态合金磁性能,这很有前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/09f2/9919121/2e03e64fea8e/materials-16-01260-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验