Suppr超能文献

基于石墨烯的完美吸收体中的低阈值和高消光比光学双稳性

Low-Threshold and High-Extinction-Ratio Optical Bistability within a Graphene-Based Perfect Absorber.

作者信息

Zhang Zhengzhuo, Sun Qiaoge, Fan Yansong, Zhu Zhihong, Zhang Jianfa, Yuan Xiaodong, Guo Chucai

机构信息

College of Advanced Interdisciplinary Studies & Hunan Provincial Key Laboratory of Novel Nano-Optoelectronic Information Materials and Devices, National University of Defense Technology, Changsha 410073, China.

出版信息

Nanomaterials (Basel). 2023 Jan 18;13(3):389. doi: 10.3390/nano13030389.

Abstract

A kind of graphene-based perfect absorber which can generate low-threshold and high-extinction-ratio optical bistability in the near-IR band is proposed and simulated with numerical methods. The interaction between input light and monolayer graphene in the absorber can be greatly enhanced due to the perfect absorption. The large nonlinear coefficient of graphene and the strong light-graphene interaction contribute to the nonlinear response of the structure, leading to relatively low switching thresholds of less than 2.5 MW/cm for an absorber with a factor lower than 1000. Meanwhile, the extinction ratio of bistable states in the absorber reaches an ultrahigh value of 47.3 dB at 1545.3 nm. Moreover, the influence of changing the structural parameters on the bistable behaviors is discussed in detail, showing that the structure can tolerate structural parametric deviation to some extent. The proposed bistable structure with ultra-compact size, low thresholds, high extinction ratio, and ultrafast response time could be of great applications for fabricating high-performance all-optical-communication devices.

摘要

提出了一种基于石墨烯的完美吸收体,该吸收体能够在近红外波段产生低阈值和高消光比的光学双稳性,并采用数值方法进行了模拟。由于完美吸收,吸收体中输入光与单层石墨烯之间的相互作用能够得到极大增强。石墨烯的大非线性系数以及强光-石墨烯相互作用促成了该结构的非线性响应,对于因子低于1000的吸收体,其开关阈值相对较低,小于2.5 MW/cm 。同时,吸收体中双稳态的消光比在1545.3 nm处达到47.3 dB的超高值。此外,还详细讨论了结构参数变化对双稳性行为的影响,结果表明该结构在一定程度上能够容忍结构参数偏差。所提出的具有超紧凑尺寸、低阈值、高消光比和超快响应时间的双稳结构在制造高性能全光通信器件方面具有巨大的应用潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81cf/9920967/e5aa13cc3cbe/nanomaterials-13-00389-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验