Suppr超能文献

钛酸钡/环氧树脂复合材料中电荷传输的界面洞察

Interfacial Insight of Charge Transport in BaTiO/Epoxy Composites.

作者信息

Jia Beibei, Zhou Jun, Chen Jiaxin, Zhang Zixuan, Wang Yang, Lv Zepeng, Wu Kai

机构信息

Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China.

School of Electronics and Information, Xi'an Polytechnic University, Xi'an 710048, China.

出版信息

Nanomaterials (Basel). 2023 Jan 19;13(3):406. doi: 10.3390/nano13030406.

Abstract

Space charge accumulation greatly influences the dielectric performance of epoxy composites under high voltage. It has been reported that nano-fillers can suppress the charge accumulation in the bulk of insulation materials. However, it is still unclear how the nano-fillers influence the charge distribution at the interface between the filler and polymeric matrix. In this work, the dielectric properties and the local dynamic charge mobility behavior at the interface of barium titanate/epoxy resin (BTO/EP) composites were investigated from both bulk and local perspectives based on the macroscopic test techniques and in-situ Kelvin probe force microscopy (KPFM) methods. Charge injection and dissipation behavior exhibited significant discrepancies at different interfaces. The interface between BTO and epoxy is easy to accumulates a negative charge, and nanoscale BTO (n-BTO) particles introduces deeper traps than microscale BTO (m-BTO) to inhibit charge migration. Under the same bias condition, the carriers are more likely to accumulate near the n-BTO than the m-BTO particles. The charge dissipation rate at the interface region in m-BTO/EP is about one order of magnitude higher than that of n-BTO/EP. This work offers experimental support for understanding the mechanism of charge transport in dielectric composites.

摘要

空间电荷积累对高压下环氧复合材料的介电性能有很大影响。据报道,纳米填料可以抑制绝缘材料本体中的电荷积累。然而,纳米填料如何影响填料与聚合物基体界面处的电荷分布仍不清楚。在这项工作中,基于宏观测试技术和原位开尔文探针力显微镜(KPFM)方法,从整体和局部角度研究了钛酸钡/环氧树脂(BTO/EP)复合材料界面处的介电性能和局部动态电荷迁移行为。电荷注入和耗散行为在不同界面处表现出显著差异。BTO与环氧树脂之间的界面容易积累负电荷,纳米级BTO(n-BTO)颗粒比微米级BTO(m-BTO)引入更深的陷阱来抑制电荷迁移。在相同偏置条件下,载流子比m-BTO颗粒更易在n-BTO附近积累。m-BTO/EP界面区域的电荷耗散速率比n-BTO/EP高约一个数量级。这项工作为理解介电复合材料中的电荷传输机制提供了实验支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28dd/9920443/c31761395504/nanomaterials-13-00406-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验